## 주메뉴

### 물리기반모델링 및 시뮬레이션

• 연세대학교
• 서진근
• 주제분류
자연과학 >수학ㆍ물리ㆍ천문ㆍ지리 >수학
• 등록일자
2010.09.24
• 조회수
11,785
•
본교과목은 편미분방정식, 해석학, 수치해석과 역학을 활용하여 수리모델/해석능력을 배우고 이를을 토대로 컴퓨터 알고리즘을 개발하고, 컴퓨터모의실험을 수행하고, 소프트웨어를 개발해 시각화한다.
Mathematical model 2: Inverse Problem (1)

#### 차시별 강의

 1 Mathematical model 2: Inverse Problem (1) Shear modulus reconstruction by low-frequency harmonic vibration 2 Mathematical model 2: Inverse Problem (2) Generalized Hookes law 3 Mathematical model 2: Inverse Problem (1) Maxwell equation - Eddy current model 4 Mathematical model 2: Inverse Problem (2) Basics in MRI 5 Mathematical model 2: Inverse Problem (3) 6 Mathematical model 2: Inverse Problem (4) 7 Mathematical model 2: Inverse Problem (1) 8 Mathematical model 2: Inverse Problem (2) 9 Mathematical model 2: Inverse Problem (3) 10 Mathematical model 2: Inverse Problem Principle of MRI : reconstruction 11 Mathematical model 2: Inverse Problem (2) Basics in MREIT(2) 12 Mathematical model 2: Inverse Problem (1) Basics in MREIT 13 Mathematical model 2: Inverse Problem (3) Basics in MREPT (3) 14 Mathematical model 2: Inverse Problem MR-based Impedance Imaging : MREIT vs MREPT 15 Mathematical model 2: Inverse Problem MR-based Impedance Imaging : MREPT 16 Mathematical model 2: Inverse Problem Conductivity Reconstruction using D-bar method for EIT 17 Mathematical model 1: Optimization Problem (1) Preliminary to Sobolev space 18 Mathematical model 1: Optimization Problem (2) Sobolev space : definitions 19 Mathematical model 1: Optimization Problem (3) Sobolev space : theory and examples 20 Mathematical model 1: Optimization Problem (4) Sobolev space : Sobolevs inequality for gradient 21 Mathematical model 1: Optimization Problem Sobolev space : three important theoremsSobolev space : Sobolev Imbedding theoremSobolev space : Proof of Sobolev Imbedding theorem, Study H^sSobolev space : Study H^s 22 Mathematical model 1: Optimization Problem (1) Review / Motivation of Sobolev spaceSobolev space : Example1Sobolev space : Example2 23 Mathematical model 1: Optimization Problem (2) Sobolev space : dual space and theoremSobolev space : Exercise1Sobolev space : Exercise2Sobolev space : Proof of exercise2 24 Mathematical model 1: Optimization Problem (3) Sobolev space : Lemma 25 Mathematical model 2: Inverse Problem (1) hybrid MREIT _ Applied mathematics in biomedical science : The goal of EIT&MREITApplied mathematics in biomedical science : Motivation, Introduction 26 Mathematical model 2: Inverse Problem (2) Applied mathematics in biomedical science : EIT method(N-channel EIT system)Applied mathematics in biomedical science : EIT method 27 Mathematical model 2: Inverse Problem (3) Applied mathematics in biomedical science : Method of MREIT 28 Special Lecture Basics of MRI 29 Special Lecture MR Quantitative susceptibility mapping(QSM) for quantifying biomarkers, removing artifacts and revealing hypointensity soure in MRI 30 Mathematical model 2: Inverse Problem (1) Uniqueness theory in EIT 31 Mathematical model 2: Inverse Problem (2) Reconstruction method in EIT : Dbar method

#### 사용자 의견

강의 평가를 위해서는 로그인 해주세요.

#### 이용방법

• 강의 이용시 필요한 프로그램 [바로가기]

※ 강의별로 교수님의 사정에 따라 전체 차시 중 일부 차시만 공개되는 경우가 있으니 양해 부탁드립니다.