-
- 주제분류
- 자연과학 >수학ㆍ물리ㆍ천문ㆍ지리 >수학
-
- 등록일자
- 2010.09.24
-
- 조회수
- 14,120
-
본교과목은 편미분방정식, 해석학, 수치해석과 역학을 활용하여 수리모델/해석능력을 배우고 이를을 토대로 컴퓨터 알고리즘을 개발하고, 컴퓨터모의실험을 수행하고, 소프트웨어를 개발해 시각화한다.
- 수강안내 및 수강신청
- ※ 수강확인증 발급을 위해서는 수강신청이 필요합니다
차시별 강의
| 1. | ![]() |
Mathematical model 2: Inverse Problem (1) | Shear modulus reconstruction by low-frequency harmonic vibration | |
| 2. | ![]() |
Mathematical model 2: Inverse Problem (2) | Generalized Hookes law | |
| 3. | ![]() |
Mathematical model 2: Inverse Problem (1) | Maxwell equation - Eddy current model | |
| 4. | ![]() |
Mathematical model 2: Inverse Problem (2) | Basics in MRI | |
| 5. | ![]() |
Mathematical model 2: Inverse Problem (3) | |
|
| 6. | ![]() |
Mathematical model 2: Inverse Problem (4) | |
|
| 7. | ![]() |
Mathematical model 2: Inverse Problem (1) | |
|
| 8. | ![]() |
Mathematical model 2: Inverse Problem (2) | |
|
| 9. | ![]() |
Mathematical model 2: Inverse Problem (3) | |
|
| 10. | ![]() |
Mathematical model 2: Inverse Problem | Principle of MRI : reconstruction | |
| 11. | ![]() |
Mathematical model 2: Inverse Problem (2) | Basics in MREIT(2) | |
| 12. | ![]() |
Mathematical model 2: Inverse Problem (1) | Basics in MREIT | |
| 13. | ![]() |
Mathematical model 2: Inverse Problem (3) | Basics in MREPT (3) | |
| 14. | ![]() |
Mathematical model 2: Inverse Problem | MR-based Impedance Imaging : MREIT vs MREPT | |
| 15. | ![]() |
Mathematical model 2: Inverse Problem | MR-based Impedance Imaging : MREPT | |
| 16. | ![]() |
Mathematical model 2: Inverse Problem | Conductivity Reconstruction using D-bar method for EIT | |
| 17. | ![]() |
Mathematical model 1: Optimization Problem (1) | Preliminary to Sobolev space | |
| 18. | ![]() |
Mathematical model 1: Optimization Problem (2) | Sobolev space : definitions | |
| 19. | ![]() |
Mathematical model 1: Optimization Problem (3) | Sobolev space : theory and examples | |
| 20. | ![]() |
Mathematical model 1: Optimization Problem (4) | Sobolev space : Sobolevs inequality for gradient | |
| 21. | ![]() |
Mathematical model 1: Optimization Problem | Sobolev space : three important theorems Sobolev space : Sobolev Imbedding theorem Sobolev space : Proof of Sobolev Imbedding theorem, Study H^s Sobolev space : Study H^s |
|
| 22. | ![]() |
Mathematical model 1: Optimization Problem (1) | Review / Motivation of Sobolev space Sobolev space : Example1 Sobolev space : Example2 |
|
| 23. | ![]() |
Mathematical model 1: Optimization Problem (2) | Sobolev space : dual space and theorem Sobolev space : Exercise1 Sobolev space : Exercise2 Sobolev space : Proof of exercise2 |
|
| 24. | ![]() |
Mathematical model 1: Optimization Problem (3) | Sobolev space : Lemma | |
| 25. | ![]() |
Mathematical model 2: Inverse Problem (1) | hybrid MREIT _ Applied mathematics in biomedical science : The goal of EIT&MREIT Applied mathematics in biomedical science : Motivation, Introduction |
|
| 26. | ![]() |
Mathematical model 2: Inverse Problem (2) | Applied mathematics in biomedical science : EIT method(N-channel EIT system) Applied mathematics in biomedical science : EIT method |
|
| 27. | ![]() |
Mathematical model 2: Inverse Problem (3) | Applied mathematics in biomedical science : Method of MREIT | |
| 28. | ![]() |
Special Lecture | Basics of MRI | |
| 29. | ![]() |
Special Lecture | MR Quantitative susceptibility mapping(QSM) for quantifying biomarkers, removing artifacts and revealing hypointensity soure in MRI | |
| 30. | ![]() |
Mathematical model 2: Inverse Problem (1) | Uniqueness theory in EIT | |
| 31. | ![]() |
Mathematical model 2: Inverse Problem (2) | Reconstruction method in EIT : Dbar method | |
연관 자료










