-
- 주제분류
- 자연과학 >수학ㆍ물리ㆍ천문ㆍ지리 >수학
-
- 강의학기
- 2014년 2학기
-
- 조회수
- 13,201
-
선형대수학의 입문으로 유한차원 벡터공간, 선형변환과 행렬의 관계, 행렬식, 1차 연립방정식의 해법, eigen vector, 유클리드 공간을 취급한다.
차시별 강의
| 1. | ![]() |
Basis and Dimension | You will look at spanning sets (in a vector space) that both are linearly independent and span the entire space. Such a set forms a basis for the vector space. (The plural of basis is bases.) | ![]() |
| 2. | ![]() |
Eigenvalues and Eigenvectors | you will consider a geometric interpretation of the problem in If is an eigenvalue of a matrix and is an eigenvector of corresponding to then multiplication of by the matrix produces a vector that is parallel to as shown | ![]() |
연관 자료








