-
- 주제분류
- 자연과학 >수학ㆍ물리ㆍ천문ㆍ지리 >통계학
-
- 강의학기
- 2021년 2학기
-
- 조회수
- 7,362
-
- 강의계획서
- 강의계획서
1. 파이썬의 scikit-learn, tensorflow를 활용하여 머신러닝을 적용하는 방법들에 대해 학습합니다.
2. 데이터마이닝1 수업에서 이론적인 부분들을 공부하였다면, 본 수업에서는 python을 이용하여 실제 데이터에 머신러닝 기법들을 적용하여 분석하는 방법들에 대해 학습합니다.
2. 데이터마이닝1 수업에서 이론적인 부분들을 공부하였다면, 본 수업에서는 python을 이용하여 실제 데이터에 머신러닝 기법들을 적용하여 분석하는 방법들에 대해 학습합니다.
- 수강안내 및 수강신청
- ※ 수강확인증 발급을 위해서는 수강신청이 필요합니다
차시별 강의
| 1. | ![]() |
수업 설명, Colab 설명 | 수업 설명, Colab 설명 | |
![]() |
Chapter 1 Machine Learning Landscape | 1. Types of Machine Learning system 2. Main challenges of Machine Learning, 3. Testing and validation | |
|
| 2. | ![]() |
Chapter 2 End-to-End Machine Learning Project | 1. Look at the big picture 2. Get the data 3. Discover and visualize the data to gain insights 4. Prepare the data for Machine Learning algorithms | |
| 3. | ![]() |
Chapter 2 End-to-End Machine Learning Project | 5. Select a model and train it 6. Fine-tune your model | |
![]() |
Chapter 3 Classification | 1. MNIST data 2. Training a Binary Classifier 3. Performance Measures 4. Multiclass Classification 5. Multilable Classification | |
|
| 4. | ![]() |
Chapter 4 Training Models | 1. Linear Regression 2. Gradient Descent 3. Polynomial Regression 4. Learning Curves 5. Regularized Linear Models | |
| 5. | ![]() |
Chapter 5 Support Vector Machines | 1. Linear SVM Classification 2. Nonlinear SVM Classification | |
![]() |
Chapter 5 Support Vector Machines | 3. SVM Regression | |
|
![]() |
Chapter 6 Decision Tree | 1. Training and Visualizing a Decision Tree 2. Making Predictions 3. Estimating Class Probabilities 4. The CART Training Algorithm 5. Regularization Hyperparameters | |
|
| 6. | ![]() |
Chapter 7 Ensemble Learning and Random Forests | 1. Voting Classifiers 2. Bagging and Pasting 3. Random Forests 4. Boosting 5. Stacking | |
![]() |
Chapter 8 Dimensionality Reduction | 1. The Curse of Dimensionality 2. Main Approaches for Dimensionality Reduction 3. PCA | |
|
| 7. | ![]() |
Chapter 8 Dimensionality Reduction | 4. Kernel PCA 5. Locally Linear Embedding (LLE) 6. Other Dimensionality Reduction Techniques | |
![]() |
Chapter 9 Unsupervised Learning Techniques | 1. Clustering 2. Gaussian Mixtures | |
|
| 8. | ![]() |
Chapter 10 Introduction to Artificial Neural Networks with Keras | 1. From Biological to Artificial Neurons 2. Implementing MLPs with Keras | |
| 9. | ![]() |
Chapter 10 Introduction to Artificial Neural Networks with Keras | 3. Fine-Tuning Neural Network Hyperparameters | |
![]() |
Chapter 11 Training Deep Neural Nets | 1. The Vanishing/Exploding Gradients Problems 2. Reusing Pretrained Layers | |
|
| 10. | ![]() |
Chapter 11 Training Deep Neural Nets | 3. Faster Optimizers 4. Avoiding Overfitting through Regularization | |
![]() |
Chapter 12 Custom Models and Trainingwith TensorFlow | 1. A Quick Tour of Tensorflow 2. Using Tensorflow like Numpy | |
|
| 11. | ![]() |
Chapter 12 Custom Models and Trainingwith TensorFlow | 3. Customizing Models and training algorithms 4. Tensorflow functions and graphs | |
| 12. | ![]() |
Chapter 13 Loading and Preprocessing Data with TensorFlow | 1. Data API 2. TFRecord Format 3. Preprocessing the input features 4. TF transform, TF Datasets | |
| 13. | ![]() |
Chapter 14 Deep Computer Vision Using Convolutional Neural Networks | 1. Convolutional Layers 2. Pooling Layers 3. CNN Architectures 4. Implementing a ResNet-34 CNN using Keras | |
| 14. | ![]() |
Final Presentation 1 | Final Team presentation | |
![]() |
Final Presentation 2 | Final Team presentation 2 | |
연관 자료










