1. | ![]() |
Course Introduction | 강의 소개 | ![]() |
![]() |
Artificial Intelligence. Part1 | AI 개요 | ![]() |
|
![]() |
Artificial Intelligence. Part2 | history and issues | ![]() |
|
![]() |
Machine learning. Part1 | Introduction to Machine Learning | ![]() |
|
![]() |
Machine learning. Part2 | ML components, data and approaches | ![]() |
|
![]() |
Machine learning. Part3 | Applications and prerequisite | ![]() |
|
2. | ![]() |
Linear Algebra Review. Part1 | Calculus for ML | ![]() |
![]() |
Linear Algebra Review. Part2 | Linear Algebra: Vector | ![]() |
|
![]() |
Linear Algebra Review. Part3 | Linear Algebra: Matrix | ![]() |
|
![]() |
Linear Algebra Review. Part4 | Linear Algebra: Decompsition and Derivatives | ![]() |
|
3. | ![]() |
Probability Review. Part1 | Probability and statistics | ![]() |
![]() |
Probability Review. Part2 | Bayes Theorem | ![]() |
|
![]() |
Probability Review. Part3 | Gaussian and other distributions | ![]() |
|
4. | ![]() |
Information Theory. Part1 | Information theory, entropy | ![]() |
![]() |
Information Theory. Part2 | KL, Mutual Information, cross entropy | ![]() |
|
5. | ![]() |
Density estimation. Part1 | density estimation, parametric method | ![]() |
![]() |
Density estimation. Part2 | non-parametric method and semi-parametric method | ![]() |
|
6. | ![]() |
Decision Theory. Part1 | classification 관련 decision theory | ![]() |
![]() |
Decision Theory. Part2 | classification 관련 decision theory | ![]() |
|
![]() |
Decision Theory. Part3 | classification 관련 decision theory | ![]() |
|
7. | ![]() |
Clustering. Part1 | introduction to clustering | ![]() |
![]() |
Clustering. Part2 | kMeans Algorithm | ![]() |
|
![]() |
Clustering. Part3 | mixture of Gaussian | ![]() |
|
![]() |
Clustering. Part4 | EM algorithm | ![]() |
|
![]() |
Clustering. Part5 | EM application | ![]() |
|
8. | ![]() |
Dimension reduction. Part1 | 차원 축소를 위한 선형 알고리즘 | ![]() |
![]() |
Dimension reduction. Part2 | 차원 축소를 위한 선형 알고리즘 | ![]() |
|
![]() |
Dimension reduction. Part3 | 차원 축소를 위한 선형 알고리즘 | ![]() |
|
![]() |
Dimension reduction. Part4 | 차원 축소를 위한 선형 알고리즘 | ![]() |
|
![]() |
Dimension reduction. Part5 | 차원 축소를 위한 선형 알고리즘 | ![]() |
|
9. | ![]() |
Nonlinear Dimension Reduction. Part1 | kernel machines and manifold learning | ![]() |
![]() |
Nonlinear Dimension Reduction. Part2 | kernel machines and manifold learning | ![]() |
|
![]() |
Nonlinear Dimension Reduction. Part3 | kernel machines and manifold learning | ![]() |
|
![]() |
Nonlinear Dimension Reduction. Part4 | kernel machines and manifold learning | ![]() |
|
10. | ![]() |
Classification. Part1 | 분류 기초 및 관련 알고리즘 | ![]() |
![]() |
Classification. Part2 | k nearest neighbor | ![]() |
|
![]() |
Classification. Part3 | Na�ve Bayes Classifier | ![]() |
|
![]() |
Classification. Part4 | Decision tree part1 | ![]() |
|
![]() |
Classification. Part5 | Decision tree part2 | ![]() |
|
11. | ![]() |
Ensemble Learning. Part1 | ensemble learning 기초 | ![]() |
![]() |
Ensemble Learning. Part2 | why and how it works | ![]() |
|
12. | ![]() |
Regression. Part1 | 회귀분석 모델 | ![]() |
![]() |
Regression. Part2 | 회귀분석 모델 | ![]() |
|
![]() |
Regression. Part3 | 회귀분석 모델 | ![]() |
|
![]() |
Regression. Part4 | 회귀분석 모델 | ![]() |
|
13. | ![]() |
Neural Networks. Part1 | 신경망 소개와 역사 | ![]() |
![]() |
Neural Networks. Part2 | forward propagation | ![]() |
|
![]() |
Neural Networks. Part3 | backward propagation | ![]() |
|
![]() |
Neural Networks. Part4 | training and properties | ![]() |
|
14. | ![]() |
Optimization. Part1 | 최적화(gradient descent, Networn method, Trust-region) | ![]() |
![]() |
Optimization. Part2 | 최적화(gradient descent, Networn method, Trust-region) | ![]() |
|
![]() |
Optimization. Part3 | 최적화(gradient descent, Networn method, Trust-region) | ![]() |
|
![]() |
Optimization. Part4 | 최적화(gradient descent, Networn method, Trust-region) | ![]() |
|
![]() |
Optimization. Part5 | 최적화(gradient descent, Networn method, Trust-region) | ![]() |
|
![]() |
Optimization. Part6 | 최적화(gradient descent, Networn method, Trust-region) | ![]() |
|
![]() |
Optimization. Part7 | 최적화(gradient descent, Networn method, Trust-region) | ![]() |
|
15. | ![]() |
Regularization. Part1 | overfitting 과 regularization 이해 | ![]() |
![]() |
Regularization. Part2 | overfitting 과 regularization 이해 | ![]() |
|
![]() |
Deep Learning. Part1 | 딥러닝 소개 | ![]() |
|
![]() |
Deep Learning. Part2 | neuroscientific support and early DL | ![]() |
|
![]() |
Deep Learning. Part3 | DL algorithms | ![]() |
|
![]() |
Recommendation. Part1 | 추천 알고리즘 소개 | ![]() |
|
![]() |
Recommendation. Part2 | 추천 알고리즘 소개 | ![]() |
|
![]() |
Recommendation. Part3 | 추천 알고리즘 소개 | ![]() |
|
![]() |
SVM. Part1 | SVM 설명 | ![]() |
|
![]() |
SVM. Part2 | SVM 설명 | ![]() |
|
![]() |
SVM. Part3 | SVM 설명 | ![]() |
|
![]() |
HMM. Part1 | HMM 설명 | ![]() |
|
![]() |
HMM. Part2 | 3 problems in HMM | ![]() |