-
- 주제분류
- 공학 >컴퓨터ㆍ통신 >정보과학
-
- 강의학기
- 2023년 2학기
-
- 조회수
- 9,702
-
- 평점
- 5/5.0 (2)
- 강의계획서
- 강의계획서
AI 의 역사와 머신러닝의 여러 개념들을 소개하고 딥러닝의 기초적인 부분까지 포함한다.
- 수강안내 및 수강신청
- ※ 수강확인증 발급을 위해서는 수강신청이 필요합니다
차시별 강의
| 1. | ![]() |
Course Introduction | 강의 소개 | |
![]() |
Artificial Intelligence. Part1 | AI 개요 | |
|
![]() |
Artificial Intelligence. Part2 | history and issues | |
|
![]() |
Machine learning. Part1 | Introduction to Machine Learning | |
|
![]() |
Machine learning. Part2 | ML components, data and approaches | |
|
![]() |
Machine learning. Part3 | Applications and prerequisite | |
|
| 2. | ![]() |
Linear Algebra Review. Part1 | Calculus for ML | |
![]() |
Linear Algebra Review. Part2 | Linear Algebra: Vector | |
|
![]() |
Linear Algebra Review. Part3 | Linear Algebra: Matrix | |
|
![]() |
Linear Algebra Review. Part4 | Linear Algebra: Decompsition and Derivatives | |
|
| 3. | ![]() |
Probability Review. Part1 | Probability and statistics | |
![]() |
Probability Review. Part2 | Bayes Theorem | |
|
![]() |
Probability Review. Part3 | Gaussian and other distributions | |
|
| 4. | ![]() |
Information Theory. Part1 | Information theory, entropy | |
![]() |
Information Theory. Part2 | KL, Mutual Information, cross entropy | |
|
| 5. | ![]() |
Density estimation. Part1 | density estimation, parametric method | |
![]() |
Density estimation. Part2 | non-parametric method and semi-parametric method | |
|
| 6. | ![]() |
Decision Theory. Part1 | classification 관련 decision theory | |
![]() |
Decision Theory. Part2 | classification 관련 decision theory | |
|
![]() |
Decision Theory. Part3 | classification 관련 decision theory | |
|
| 7. | ![]() |
Clustering. Part1 | introduction to clustering | |
![]() |
Clustering. Part2 | kMeans Algorithm | |
|
![]() |
Clustering. Part3 | mixture of Gaussian | |
|
![]() |
Clustering. Part4 | EM algorithm | |
|
![]() |
Clustering. Part5 | EM application | |
|
| 8. | ![]() |
Dimension reduction. Part1 | 차원 축소를 위한 선형 알고리즘 | |
![]() |
Dimension reduction. Part2 | 차원 축소를 위한 선형 알고리즘 | |
|
![]() |
Dimension reduction. Part3 | 차원 축소를 위한 선형 알고리즘 | |
|
![]() |
Dimension reduction. Part4 | 차원 축소를 위한 선형 알고리즘 | |
|
![]() |
Dimension reduction. Part5 | 차원 축소를 위한 선형 알고리즘 | |
|
| 9. | ![]() |
Nonlinear Dimension Reduction. Part1 | kernel machines and manifold learning | |
![]() |
Nonlinear Dimension Reduction. Part2 | kernel machines and manifold learning | |
|
![]() |
Nonlinear Dimension Reduction. Part3 | kernel machines and manifold learning | |
|
![]() |
Nonlinear Dimension Reduction. Part4 | kernel machines and manifold learning | |
|
| 10. | ![]() |
Classification. Part1 | 분류 기초 및 관련 알고리즘 | |
![]() |
Classification. Part2 | k nearest neighbor | |
|
![]() |
Classification. Part3 | Na�ve Bayes Classifier | |
|
![]() |
Classification. Part4 | Decision tree part1 | |
|
![]() |
Classification. Part5 | Decision tree part2 | |
|
| 11. | ![]() |
Ensemble Learning. Part1 | ensemble learning 기초 | |
![]() |
Ensemble Learning. Part2 | why and how it works | |
|
| 12. | ![]() |
Regression. Part1 | 회귀분석 모델 | |
![]() |
Regression. Part2 | 회귀분석 모델 | |
|
![]() |
Regression. Part3 | 회귀분석 모델 | |
|
![]() |
Regression. Part4 | 회귀분석 모델 | |
|
| 13. | ![]() |
Neural Networks. Part1 | 신경망 소개와 역사 | |
![]() |
Neural Networks. Part2 | forward propagation | |
|
![]() |
Neural Networks. Part3 | backward propagation | |
|
![]() |
Neural Networks. Part4 | training and properties | |
|
| 14. | ![]() |
Optimization. Part1 | 최적화(gradient descent, Networn method, Trust-region) | |
![]() |
Optimization. Part2 | 최적화(gradient descent, Networn method, Trust-region) | |
|
![]() |
Optimization. Part3 | 최적화(gradient descent, Networn method, Trust-region) | |
|
![]() |
Optimization. Part4 | 최적화(gradient descent, Networn method, Trust-region) | |
|
![]() |
Optimization. Part5 | 최적화(gradient descent, Networn method, Trust-region) | |
|
![]() |
Optimization. Part6 | 최적화(gradient descent, Networn method, Trust-region) | |
|
![]() |
Optimization. Part7 | 최적화(gradient descent, Networn method, Trust-region) | |
|
| 15. | ![]() |
Regularization. Part1 | overfitting 과 regularization 이해 | |
![]() |
Regularization. Part2 | overfitting 과 regularization 이해 | |
|
![]() |
Deep Learning. Part1 | 딥러닝 소개 | |
|
![]() |
Deep Learning. Part2 | neuroscientific support and early DL | |
|
![]() |
Deep Learning. Part3 | DL algorithms | |
|
![]() |
Recommendation. Part1 | 추천 알고리즘 소개 | |
|
![]() |
Recommendation. Part2 | 추천 알고리즘 소개 | |
|
![]() |
Recommendation. Part3 | 추천 알고리즘 소개 | |
|
![]() |
SVM. Part1 | SVM 설명 | |
|
![]() |
SVM. Part2 | SVM 설명 | |
|
![]() |
SVM. Part3 | SVM 설명 | |
|
![]() |
HMM. Part1 | HMM 설명 | |
|
![]() |
HMM. Part2 | 3 problems in HMM | |
연관 자료










