1. |
|
확률 이론1 |
Random Event
Conditional Probability |
|
2. |
|
확률 이론1 |
Total Probability
Bayes' Theorem and Independence |
|
3. |
|
확률 이론1 |
Random Variable, Random Vector
Characteristic and Generating Function |
|
4. |
|
랜덤 프로세스1 |
Random Process
Markov Processes
Birth-Death processes |
|
5. |
|
랜덤 프로세스2 |
Random Walks
Wide Sense Stationary (WSS)
Gaussian Process |
|
6. |
|
마코프 체인 1 |
Discrete-time Markov Chains
Homogeneous Markov Chain
The Chapman-Kolmogorov equation
Ergodicity |
|
7. |
|
마코프 체인 2 |
Continuous-time Markov Chains
Birth-Death Processes |
|
8. |
|
Poisson Processes |
Poisson Processes
Memoryless property
Erlang distribution |
|
9. |
|
기초 대기이론 1 |
Specification of queueing systems
Classification of queueing systems
Little’s formulas |
|
10. |
|
기초 대기이론 2 |
General equilibrium solution
M / M / 1 queueing system |
|
11. |
|
기초 대기이론 3 |
M / M / ∞ or M / M QS : infinite number of servers
M / M / m QS : the m - server case
M / M / 1 / K QS : the finite storage case. |
|
12. |
|
기초 대기이론 4 |
M / M / m / m QS : the m servers loss case
M / M / 1 // M (M / M 1 / ∞ / M) : finite customer population - single server
M / M / ∞ // M (M / M /// M)
M / M / m / K / M |
|
13. |
|
기초 대기이론 5 |
A remark on the applicability of steady-state solutions
The equilibrium equations for Markov queues
The method of stages – Erlang distribution |
|
14. |
|
기초 대기이론 6 |
The M / Er / 1 QS
Some further extensions of the M/Er/1 system |
|
15. |
|
M/G/1 |
Pollazchek-Khinchin mean values formulas |
|
|
|
Networks of queues |
Burke’s theorem
Jackson theorem |
|