-
- 주제분류
- 자연과학 >수학ㆍ물리ㆍ천문ㆍ지리 >수학
-
- 강의학기
- 2012년 1학기
-
- 조회수
- 14,939
-
- 강의계획서
- 강의계획서
수직선 상의 함수와 수열, Lebesque 측도와 적분을 다룬다. 수열의 극한, Cantor-like Sets를 다루고 Lebesque 측도의 정의와 성질, 측도 가능한 함수와 Lebesque 적분을 다룬다. 끝으로 함수의 미분 가능성도 다루게 된다.
차시별 강의
| 1. | ![]() |
Review of chap Ⅰ and Ⅱ. The real number system. | 1. basic properties of real numbers | ![]() |
| 2. | ![]() |
Outer measure and measurable sets | 1. several propositions concerning algebras of sets. | ![]() |
| 3. | ![]() |
Lebesque measure and measurable sets | 1. countably additive measure. 2. counting measure. 3. outer measure | ![]() |
| 4. | ![]() |
Nomeasurable sets | 1. countably additive measure. 2. Lebesque measure | ![]() |
| 5. | ![]() |
Measurable functions | 1. Borel sets and their measurability 2. Nomeasurable sets | ![]() |
| 6. | ![]() |
Littlewood's three principles | 1. definition of measurable function 2. basic properties of Lebesgue measurable functions | ![]() |
| 7. | ![]() |
The Riemann Integral | 1. some properties of Lebesgue measurable functions 2. Egoroff's theorem | ![]() |
| 8. | 중간고사 | |||
| 9. | ![]() |
The Lebesque Integral of a bounded function | 1. definition of Riemann integral 2 definition of Lebesgue integral | ![]() |
| 10. | ![]() |
The integral of a nonnegative function | 1. Bounded convergence theorem 2. The integral of a nonnegative measurable function | ![]() |
| 11. | ![]() |
The general Lebesque Integral | 1. Fatous lemma 2. monotone convergence theorem | ![]() |
| 12. | ![]() |
Convergences in measure | 1. Lebesgue dominated convergence theorem 2. General L.D.C.T. | ![]() |
| 13. | ![]() |
The classical Banach spaces | 1. normed linear spaces 2. definition of Lp-space 3. Banach spaces | ![]() |
| 14. | ![]() |
The Holder and Minkowski inequalities | 1. The Holder inequalities 2. The Minkowski inequalities | ![]() |
| 15. | ![]() |
Bounded linear functionals | 1. Rietz-Fischer theorem 2. Riesz representation theorem | ![]() |
연관 자료








