1. |
|
2018’ Welcome to Multivariate Statistics(I)
|
Course description/Practice time/Final Exam/Term project |
|
2. |
|
Lecture 1. Multivariate Data Analysis (MDA)
|
1.1. Multivariate data analysis
1.2 Types of multivariate analysis techniques |
|
3. |
|
Lecture 1. Multivariate Data Analysis (MDA)
|
1.3 Introduction and visualization of multivariate data
1.4 Matrix Representation and Descriptive Statistics |
|
4. |
|
Lecture 1. Multivariate Data Analysis (MDA)
|
1.5 Distances and Correlation of multivariate data
1.6 Multivariate normal distribution and its useful property |
|
5. |
|
Lecture 1. Multivariate Data Analysis (MDA)
|
1.7 Wishart and Hotelling Distributions
1.8 Test of multivariate normality
1.9 R for EDA: Practice Time |
|
6. |
|
Lecture 2. Principal Component Analysis (PCA)
|
2.1 Comprehension of PCA
2.2 Concepts of pc
2.3 Algebraic inducement of pc |
|
7. |
|
Lecture 2. Principal Component Analysis (PCA)
|
2.4 Selection and explanation of pc
2.5 Algebraic inducement of sample pc |
|
8. |
|
Lecture 2. Principal Component Analysis (PCA)
|
2.6 Visualizations of PCA
2.7 R for PCA: Practice Time |
|
9. |
|
Lecture 3. Factor Analysis (FA)
|
3.1 Comprehension of FA
3.2 Conseptof common factor |
|
10. |
|
Lecture 3. Factor Analysis (FA)
|
3.3 Factor model
3.4 Estimation of factor model |
|
11. |
|
Lecture 3. Factor Analysis (FA)
|
3.5 Factor rotation and factor loadings plot
3.6 Application of factor scores |
|
12. |
|
Lecture 3. Factor Analysis (FA)
|
3.7 Visualizations of FA
3.8 R for FA: Practice Time |
|
13. |
|
Lecture 5. Cluster Analysis (CA)
|
5.1 Comprehension of CA
5.2 Similarity measures |
|
14. |
|
Lecture 5. Cluster Analysis (CA)
|
5.3 Hierarchical clustering methods |
|
15. |
|
Lecture 5. Cluster Analysis (CA)
|
5.4 Non-hierachical clustering methods
5.5 Numbers of Clusters
5.7 R for CA:Practice Time
5.7 R for CA: Practice Time |
|