Course Syllabus

1. Basic Course Information

Course Name	Machine	Learning	Course code	IT	P40010	
Year	20	23	Semester	2		
Department	· ·	uter Science and Ingineeering	Categories	major elective		
Grade		4	Section	1		
Major	Information Techno	ology, Computer Sci	ence, Computer Engir	neering, Elec	trical Engineering	
	Total	Lecture	Experiment/Practice	Design	etc()	
Course Credit	3	3	0	0	0	

Method of Course	Lecture	ecture							
Prerequisite Courses	Compuls Calculus2, Lin Recomm Data Structure ended stics		Parallel Courses						
Supervising Professor	Heeyoul Choi		Email						
Lecturer Name	Lecturer Email	Lecturer Contact Number	Office	Office Hour					
Heeyoul Choi		054-260-1303	OH 312						
TA Name	TBD		TA email	TBD					
Classroom Location	TBD		Lecture Hours	TBD					

2. Course Objectives

Course Objective

No	Objectives
1	The students understand the basic concept and algorithms used in machine learning.
2	The students can build simple AI systems using machine learning algorithms

Course Description

This course covers core concepts of AI and machine learning. It covers fundamentals and widely used techniques in m achine learning applications. The students learn the theory of major methodologies and practice to solve simple proble ms by writing machine learning SW or applying open source SW. It also covers a brief review of mathematics required to understand machine learning theory, calculus, linear algebra, and statistics.

This course covers emerging techniques including deep learning and recurrent neural networks.

3. Course Managements

Lecture Materials

Primary	I IIID	Pattern Recognition and Machine Learning (Optional)	Author	C. M. Bishop
books/readings	Publisher Springer		Year	2006
Supplemental books/readings	Title	Deep Learning (Optional)	Author	I. Goodfellow, Y. Bengio, a nd A. Couville
books/readings	Publisher	The MIT Press	Year	2016

Evaluations

Attendance Management	- Absence	es of 25% o	r more will	result in failu	ure in this cou	rse.				
Grading Policies	Attenda nce	_ Quiz Homework etcl ()	etc2 ()							
and Rates (%)	0	0	0	0	10	90				
Honor Code	Refer 'HGI	Refer 'HGU CSEE Standard' including 'Honor Code Guideline'								

Class Activity Plan

Lecture	50%	Experiment	%	Practice	%
Team Project	%	Presentation	10%	Discussion	40%
etc1()	%	etc2()	%	etc3()	%
Total	100%				

Assignments and Projects

No	Detail
1	TBD

4. Weekly Schedule

Week	Date	Lecture Topics	Evaluation and Homework
1		Machine learning introduction	
2		math review (Linear algebra)	
3		math review (Probability)	
4		Information Theory, Density Estimation	
5		Decision Theory	
6		Clustering	
7		Dimension Reduction	
8		Nonlinear Dimension Reduction	

Week	Date	Lecture Topics	Evaluation and Homework
9		Classification	
10		Ensemble Learning, Regression	
11		Neural Networks	
12		Numerical Optimization	
13		Regularization, Deep Learning	
14		Recommendation, SVM	
15		НММ	
16		Final Exam	

5. Notice/Additional Information

Notice

The class includes online and offline. Offline classes will work as Q&A session on lectures, homework assignment.

Additional Information

No	Contents
1	

6. Course Information for disabled students												
• Lectures, bility.	assignments	and	evaluations	in	consideration	of	types	and	degree	of	the	disa