2017-2 Analysis(2) Syllabus

Course	Analysis(2)	Credit	3	Hours	3	Instructor		-
Course description	Based on the knowledge of basic Calculus and mathematical analysis(1), the 2 nd part of the mathematical analysis is introduced. After taking a brief look at the topological aspects of the real number system, we define Riemann integral and consider the sequences of functions.							
Course objectives	This course covers the following topics: - Riemann Integral - Sequences of functions and convergence - Fourier series							
Prerequisites	- Calculus, Analysis(1)							
Grading	- Quiz(10%), Midterm(40%) and final exam(40%) - Homework and Attendance(10%)							
Textbook	Introduction to real analysis (4th ed.) by Robert G. Bartle and Donald R. Sherbert, Wiley, 2011 (ISBN: 978-0471433316)							
Reference book	The elements of real analysis (2/ed), Robert G. Bartle, John Wiley & Sons, 1976 (ISBN: 978-0471054641)							
Assignment						Remarks		
Homework								ТВА

Weekly Schedule

Week	Date	Description	Assignment/ Reference		
1	8/29	Course introduction			
1	8/31	Open and closed sets			
2	9/5	Compactness			
	9/7	Heine-Borel Theorem			
3 -	9/12	9/12 Partition and Riemann sums			
	9/14	Riemann integral			
4	9/19	9/19 Integrable functions			
	9/21				
5 -	9/26	Pointwise convergence			
	9/28	Uniform convergence			
6 -	10/3	Criteria for uniform convergence			
	10/5	Interchange of limits			
7 -	10/10	Uniform continuity			
'	10/12	Revisiting Taylor's Theorem			
8 -	10/17	Review and Catch-up			
	10/19	Midterm	Homework		
9	10/24	Introduction to infinite series	(TBA)		
	10/26	Tests for absolute convergence (1)			
10	10/31	Tests for absolute convergence (2)			
	11/2	Alternating series			
11 -	11/7	Abel's Lemma and Dirichlet's test			
	11/9	Series of functions			
12 -	11/14	Weierstrass M-test			
	11/16	Function spaces and projection			
13 -	11/21	Fourier series			
	11/23	Gauge and delta-fine partition			
14	11/28	Generalized Riemann integral			
	11/30	Improper integrals			
15	12/5	Improper integrals on infinite intervals			
15	12/7	Lebesgue's Dominated Convergence Theorem			
10	12/12	Review and Catch-up			
16	12/14	Final Exam			