강 의 계 획 서

교과목명	유체역학	주야	주간	교과 코드		20030083		이수구분		전공선택		
학점	3	주당시수		이론(3) ,	/ 실기	기(0)	학점구성	01	론(3) 실습(0) 설계(0)			
개설학년	2	개설학기	1학기			강의시간		월2/화6,7				
담당교수	차동진	상담일시	M-F 17	7:00~18:0	0	연구실		S8동 전 화:		화:		
001	700	Suevi	101 1 17	100 1010								
담당조교				상담일시		수시 사무?		사무실		S8동	전	화:
00五重		002/1		→ ∧1		NTZ				e-mail:		
인증구분	인증() 비인증 (O)	교과구분						선수권장 과목				

교과목의 교육목적	1. To develop a sound knowledge of engineering fundamentals required for fluid mechanics
	2. To develop skills to integrate, synthesize, and apply engineering principles to the design and operation of fluid mechanics
	3. To develop an appreciation for the importance of professional behavior, ethics, and life-long learning in the engineering profession
	4. To develop effective skills i both written and oral communications, and the ability to work effectively in a multi-funtional team environment.
교과목의 개 요	The basic principles and concepts of fluid mechanics will be discussed. This course is necessary for handling fluids in building equipment and/of facility including air conditioning, water distribution and drainage, sanitation and fire safety equipments.

	구분	교재명	저자	출판사	출판년도
교재	주교재	Fluid Mechanics Fundamentals and applications	Y.A. Cengel and J.M Cimbala	McGraw-Hill	2006
	참고 서적	유체역학(Fluid Mechanics)	이종춘 외 (원저: I.Granet)	SciTech Media	1998
비고					

강의진행	강의(ㅇ) 토의(ㅇ) 과제평가(ㅇ) 현장학습() Computer사용(ㅇ)
방 식	Beam Project사용(ㅇ) OHP사용() VTR사용() 기타()
	※ 해당란에 모두 표시

강의평가	정기평가(40%) 수시평가(30%) 과제평가(20%) 보고서(0%) 퀴즈(0%)
방 식	실험(0%) 프로젝트(0%) 발표(0%) 출석평가(10%) 기타(0%)
	※ 합은 100%

주별 강의진행계획

주	강의내용	비고
1	Introduction and Basic Concepts (Chapter 1)	Lecture and Discussion
2	Properties of Fluids (Chapter 2)	Lecture and Discussion
3	Properties of Fluids Statics I (Chapter 3)	Lecture and Discussion
4	Properties of Fluids Statics II (Chapter 3)	Lecture and Discussion
5	Fluid Kinematics (Chapter 4)	Lecture and Discussion
6	Mass, Bernoulli, and Energy Equations I (Chapter 5)	Lecture and Discussion
7	Mass, Bernoulli, and Energy Equations II (Chapter 5)	Lecture and Discussion
8	Mid-term exam	Exam
9	Differential Analysis I (Chapter 9)	Lecture and Discussion
10	Differential Analysis II (Chapter 9)	Lecture and Discussion
11	Approximate Solutions of the Navier-Stokes Equation I (Chapter 10)	Lecture and Discussion
12	Approximate Solutions of the Navier-Stokes Equation II (Chapter 10)	Lecture and Discussion
13	Flow over Bodies : Drag and Lift (Chapter 11)	Lecture and Discussion
14	Open Channel Flow (Chapter 13)	Lecture and Discussion
15	Final exam	Exam