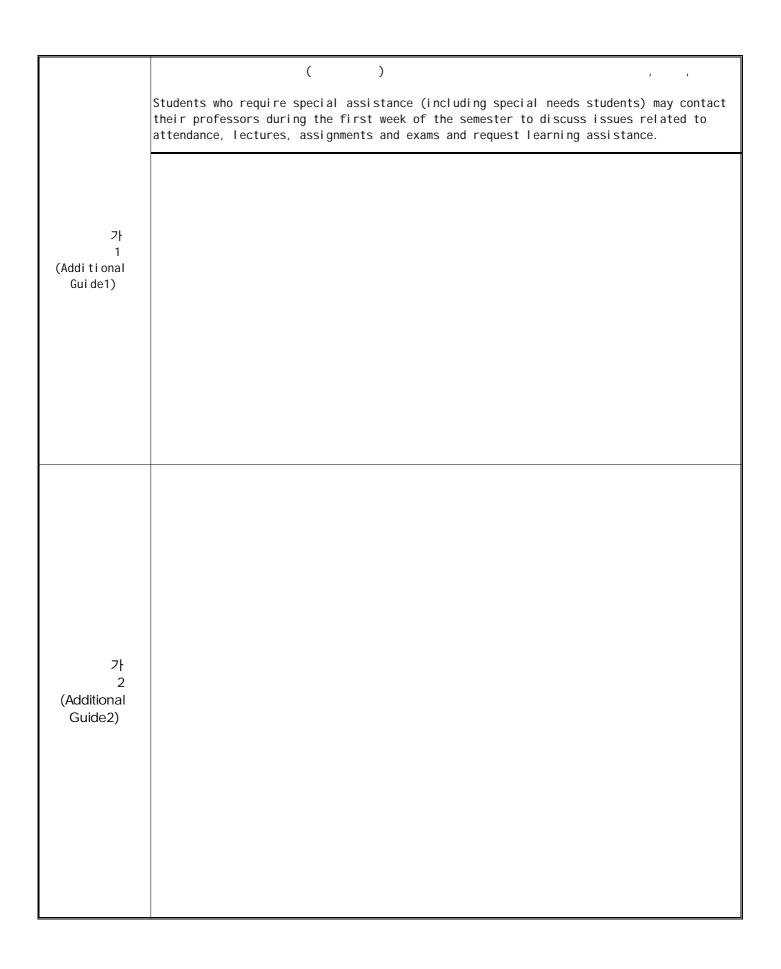
2015 1

Course Title	()	()	Mechanical Vibration		
() Lecturer	()	/ / (Course No. /)	006891/ /3		
(/HP) Contact No.		/ (Class Hour/Venue)	/ 9:00-10:30 / 106		
(Course Prerequisite)	Enginering Mathematics, Dynamics	(Target Student)	Mechani cal Engi neeri ng Juni or		
E-mail (E-mail Address)		/Office Hour (Office/Office Hour)	Tue/Thrs15:00-16:30		
(Objectives)	Vibration phenomenon of mechanical systems will be covered in this class. To obtain in-depth understanding of vibration phenomenon of the mechanical system through the lectures on the mathematical expression and analysis of vibration phenomenon, degree of freedom, resonance, concept of damping, free vibration, system response to specific input, vibration control and design, multi-degree of freedom system and continuous system vibration				
CQI (Continuous Quality Improvement Plan)	review				
	main text: Daniel J. Inman, Engineering Vibrations (4nd edition), Prentice Hall.				
(Text book & References)	reference: Singiresu S. Rao, Mechanical Vibrations (4th ed.), Prentice Hall.				
(Assignment book)	Daniel J. Inman, Engineering Vibrations (2nd edition), Prentice Hall.				
(Lecture Methods)	Lecture notes in PPT format will be used through projector				
(Assignment)	homework problems with which main topics would be understood and reinforced will be given. homework problems are due in one week after given 1. Free Response 2. Matlab/Simulink simulation 3. Harmonic Excitation 4. General Forced Response 5. Multi-degree of Freedom System Response				
(Reading Materials)					
가 (Course Grading)	[7] (%) : 40, (%) : 40, 7 (%) : 10, (%) : 10, midterm(40 %), final(40 %), homework(10 %), attendance(10 %)				
(Etc.)					


(:)

(Week)	(Course Contents)	(Etc.)	
1	Introduction to vibration, Course overview Review of Dynamics (Equation of motion)	bl ackboard & proj ector	
2	One Degree-of-Freedom System Free Response(Equilibrium, Free undamped response) One Degree-of-Freedom System Free Response(free undamped response)	bl ackboard & proj ector	
3	One Degree-of-Freedom System Free Response(damping, free damped response) One Degree-of-Freedom System Free Response(Energy method)	bl ackboard & proj ector	
4	One Degree-of-Freedom System (stiffness) One Degree-of-Freedom System (measurements)	bl ackboard & proj ector	
5	Matlab / Simulink / Computer simulation Matlab / Simulink / Computer simulation, Nonlinear vibration system, stability	bl ackboard & proj ector	
6	Response to Harmonic Excitation (harmonic response, frequency response to harmonic input) Response to Harmonic Excitation (Base excitation)	bl ackboard & proj ector	
7	Response to Harmonic Excitation (Base excitation, rotating unbalance) Response to Harmonic Excitation (measurement device) & review	bl ackboard & proj ector	
8	Review midterm exam		

:

(:)

(Week)	(Course Contents)	(Etc.)
9	General Forced Response (impulse response) General Forced Response (response to arbitrary input)	bl ackboard & proj ector
10	General Forced Response (Fourier series, response to an arbitrary periodic input)	bl ackboard & proj ector
11	Laplace transform	bl ackboard & proj ector
12	Multiple-Degree-Of-Freedom System (Eigenvalue problem, free undamped n-DOF system)	blackboard & projector
13	Diagonalization Modal analysis	blackboard & projector
14	Modal analysis Multi DOF forced response with viscous damping	bl ackboard & proj ector
15	Lagrange Equation	blackboard & projector
16	Review final exam	

