바로가기

주메뉴

수치시뮬레이션기반공학특강1

  • 연세대학교
  • 정윤모
  • 공유하기
  • 강의담기
  • 오류접수
  • 이용안내
강의사진
  • 주제분류
    공학 >컴퓨터ㆍ통신 >정보통신공학
  • 강의학기
    2012년 1학기
  • 조회수
    5,769
  • 평점
    5/5.0 (1)
For graduate student in science and engineering. The purpose of this course is twofold; sparse and redundant representation in signal and image processing and compressed sensing or compressive sampling in imaging.
CH 1: The introduction of this course
배속
  • 이전차시
  • 다음차시

차시별 강의

PDF VIDEO SWF AUDIO DOC AX
1. CH 1: The introduction of this course The schedule for this semester. Reference book, requirments and evaluation method URL
3. CH 2: L0, L1, L2 Minimization as Regularization 1. Underdetermined linear system; 2. The temptation of convexity; 3. Closer look at L1 minimization URL
4. CH 2: L0, L1, L2 Minimization as Regularization 1. Closer look at L1 minimization; 2. Conversion of (P1) to linear programming; 3.Promoting sparse solution URL
CH 2: L0, L1, L2 Minimization as Regularization 1. Promoting sparse solution; 2. The L1-norm and implications; 3. The (P0) problem-sparsity optimization URL
5. CH 3: Uniqueness and Uncertainty 1. Two orthogonal case; 2.. An uncertainty principle; 3. Heisenberg uncertainty URL
6. CH 3: Uniqueness and Uncertainty 1. Uncertainty of redundant solutions; 2. From uncertainty to uniqueness; 3. URL
CH 3: Uniqueness and Uncertainty 1. Uniqueness via spark; 2. Uniqueness via the mutual-coherence URL
7. CH 4:Pursuit Algorithms- Practice (1) 1. The core idea; 2. The orthogonal matching pursuit URL
8. CH 4:Pursuit Algorithms- Practice (2) 1. Other greedy method; 2. Convex relaxation techniques URL
10. CH 5: Pursuit Algorithms--Guarantees 1. OMP Performance Guarantee;
2. BP performance guarantee;
3. Performance of pursuit algorithms;
4. Tropps Exact recovery condition
URL
11. CH6: From Exact to Approximate Solutions (1) 1. General motivation;
2. Stability of the sparsest solution;
3. Theoretical study of the stability of (P_0^e)
URL
CH6: From Exact to Approximate Solutions (2) 1. Theoretical study of the stability of (P_0^e); URL
12. CH6: From Exact to Approximate Solutions (3) 1. Restricted isometry property;
2. Stability analysis;
3. Pursuit algorithms;
4. OMP and BP extension
URL
13. CH6: From Exact to Approximate Solutions (4) 1. Basic pursuit denoising;
2. IRLS ;
3. Subgradients
URL
CH6: From Exact to Approximate Solutions (5) 1. LARS;
2. Unitary case;
3. BPDN stability guarantee
URL
14. CH6: From Exact to Approximate Solutions; Ch7: Compressed sensing/Compressive sampling 1. stability of BPDN;
2. Overview;
3. Fourier analysis;
URL
15. Ch7: Compressed sensing/Compressive sampling (1) 1. wavelets;
2. compressed sensing understanding
URL
Ch7: Compressed sensing/Compressive sampling (2) 1. sparsity and compression; URL
16. Ch7: Compressed sensing/Compressive sampling (3) 1. compressed sensing understanding;
2. Sensing matrix
URL
Ch7: Compressed sensing/Compressive sampling (4) 1. Null space conditions; URL
17. Ch7: Compressed sensing/Compressive sampling (5) 1. The restricted isometry property URL
18. Ch7: Compressed sensing/Compressive sampling (6) 1. The restricted isometry property;
2. The relationship between RIP and NSP;
3. Coherence;
URL
Ch7: Compressed sensing/Compressive sampling (7) 1. The restricted isometry property;
2. Sensing matrix constructions;
3. Signal recovery via l1 minimization;
4. Noise free signal recovery
URL
19. Ch7: Compressed sensing/Compressive sampling (8) 1. Noise free signal recovery; URL
20. Ch7: Compressed sensing/Compressive sampling (9) 1. signal recovery in noise: bounded noise URL
Ch7: Compressed sensing/Compressive sampling (10) 1. signal recovery in noise: Gaussian noise;
2. Coherence guarantees
URL
21. The Johnson—Lindenstrauss lemma (1) 1. Lemma explaination;
2. Main idea
URL
The Johnson—Lindenstrauss lemma (2) 1. Proof URL
The Johnson—Lindenstrauss lemma (3) 1.proof URL
22. Principle component analysis (1) 1. Overview;
2. Motivation: A toy example;
3. Frame work
URL
Principle component analysis (2) 1. Covariance analysis;
2. Covariance matrix;
URL
Principle component analysis (3) 1. Covariance and correlation;
2. PCA using SVD
URL

연관 자료

loading..

사용자 의견

강의 평가를 위해서는 로그인 해주세요.
운영자2017-07-17 09:26
KOCW운영팀입니다. 강의교재는 확인이 어렵다는 답변을 받았습니다. 양해 부탁드립니다.
운영자2017-07-17 09:25
KOCW운영팀입니다. 2차시, 9차시는 교수자 및 학교의 사정으로 제공이 어렵습니다. 양해 부탁드립니다.
whgustjr89 2017-07-15 03:34
2회차 강의는 원래 없는건가요?
운영자2016-10-05 10:46
KOCW운영팀입니다. 연세대학교로 강의교재에 대해 문의하였습니다. 답변이 오는대로 안내 드리도록 하겠습니다.
electr 2016-10-03 22:45
혹시 사용하는 교재를 알 수 있을까요?

이용방법

  • 강의 이용시 필요한 프로그램 [바로가기]



    ※ 강의별로 교수님의 사정에 따라 전체 차시 중 일부 차시만 공개되는 경우가 있으니 양해 부탁드립니다.

이용조건