바로가기

주메뉴

수치편미분방정식

  • 연세대학교
  • 이은정
  • 공유하기
  • 강의담기
  • 오류접수
  • 이용안내
강의사진
  • 주제분류
    자연과학 >수학ㆍ물리ㆍ천문ㆍ지리 >수학
  • 강의학기
    2011년 1학기
  • 조회수
    12,848
  •  
This course focuses on the fundamentals of modern numerical techniques for a wide range of linear and nonlinear elliptic, parabolic, and hyperbolic partial differential equations and integral equations central to a wide variety of applications in science, engineering, and other fields. Topics includes : Mathematical formulations; Finite difference method, Finite volume method, Collocation method, Finite element method
Introduction of this course 1-1
배속
  • 이전차시
  • 다음차시

차시별 강의

PDF VIDEO SWF AUDIO DOC AX
1. Introduction of this course 1-1 1. Introduction of this course
2. Preliminaries
URL
2. Introduction of this course 1-2 URL
3. Introduction of this course 2 1. Introduction of this course
2. Preliminaries
URL
4. Steady state and Boundary value problems 1 1. Heat Equation
2. Locla Trucation error, Global error
3. Dirichlet-Neumann Boundary condition
URL
5. Steady state and Boundary value problems 2 1. Dirichlet-Neumann boundary condition
2. Neumann boundary conditon
3. 2D steady state heat equation
URL
6. Steady state and Boundary value problem 1. 2D steady state heat equation
2. Singular perturbation and boundary layer
URL
7. The Initial Value Problem for Ordinary Differential Equations 1 1. Linear Ordinary Differential Equation
2. Lipschitz continuity
URL
8. The Initial Value Problem for Ordinary Differential Equations One-step method for ODE URL
9. The Initial Value Problem for Ordinary Differential Equations Multistep method for ODE URL
10. Zero-Stability and Convergence for Initial value Problem Stability of one-step method URL
11. Absolute Stability for Ordinary Differential Equations Absolute Stability of one-step and multistep methods, Stability Regions URL
12. Diffusion Equations and Parabolic Problems Discretization of Diffusion Equations URL
13. Diffusion Equations and Parabolic Problems Matrix form of Crank-Nicolson, LTE, Stability URL
14. Diffusion Equations and Parabolic Problems Stability of Crank-Nicolson and Forward Euler URL
15. Diffusion Equations and Parabolic Problems Stiffness of heat equations, Convergence URL
16. Diffusion Equations and Parabolic Problems Lax Equivalence Theorem, Von-Neumann Analysis URL
17. Diffusion Equations and Parabolic Problems Von-Neumann Analysis, Multidimensional Problems URL
18. Advection Equations and Hyperbolic equations Method of Lines Discretiztion(MOL) URL
19. Advection Equations and Hyperbolic equations Method of Lines Discretiztion, Von-Neumann Analysis for MOL URL
20. Advection Equations and Hyperbolic equations Von-Neumann Analysis, CFL condition URL
21. Finite Volume Method Conservation Law, General Formulation URL
22. Finite Volume Method Conservation Law, CFLcondition, Numerical Fluxes URL
23. Finite Volume Method Numerical Fluxes URL
24. Finite Volume Method Limiters URL
25. Finite Volume Method Limiters, TVD URL
26. Finite Volume Method FVM in n-dimensional space URL
27. Finite Volume Method FVM in n-dimensional space URL
28. Finite Element Method Sobolev Spaces URL
29. Finite Element Method Sobolev Spaces URL
30. Finite Element Method Sobolev Spaces URL
31. Finite Element Method FEM - Implementation URL
32. Finite Element Method FEM - Implementation URL
33. Finite Element Method FEM for 2D Poissong Equation, ProgrammingWeak solutions URL
34. Finite Element Method Existence and Uniqueness of weak solutions URL
35. Finite Element Method Dirichlet Problem, Neumann Problem URL
36. Finite Element Method Minimization Problem, Discrete Problem URL

연관 자료

loading..

사용자 의견

강의 평가를 위해서는 로그인 해주세요.

이용방법

  • 강의 이용시 필요한 프로그램 [바로가기]



    ※ 강의별로 교수님의 사정에 따라 전체 차시 중 일부 차시만 공개되는 경우가 있으니 양해 부탁드립니다.

이용조건