
ITP20001/ECE20010 Data Structures

idebtor@gmail.com 1/5 Youngsup Kim

School of Computer Science and Electronics Engineering

Data Structures – ITP20001/ECE20010

Contents

 General Information

 Course Description, and Goals

 Texts, Materials, and Resources

 Exams, Projects and Grading

 Policies and Advice

 Tentative Course Schedule

General Information
Class Meeting Information

Section Days Time Credit Hours Lecture Room Lecture in Korean,

Material/Exam/Quiz in English 03 Mon, Thu 09:30 – 11:15 3 Online/NTH311

Instructor
Name Youngsup Kim

Office

Hours
Grace School 204, Mon, Thu 11:15~12:15, 17:45 ~ 18:15 or with an appointment.

Ask your questions on the discussion group available from Piazza.com

Contacts

Piazza
Use for the public open questions and comments

Notice that you have an option “Post to Instructors”.

TA

Course Description and Goals
Catalog Description – 3 Credit Hours

This course covers some of the general-purpose data structures and includes some basics of

algorithms. It is aimed at helping you understand the reasons for choosing structures or

algorithms for software development. Topics covered include managing abstract data types,

time complexity, linked list, stack, queue, tree, heap, sorting, hash, and graphs. Students learn a

systematic approach to organizing, writing and debugging medium-sized programs through a

useful set of algorithmic data structures. They learn to develop useful data structures for

organizing and representing data to solve real problems. They are also provided with many

chances to practice C/C++ programming skills.

Prerequisites
Students are required to be familiar with C programming language, but not C++.

Objectives
1. Learn the basic C/C++ programming skills such as pointers, array, dynamic memory

allocation, recursion, overloading and a bit of Object-Oriented programming as well.

2. Understand the concepts of algorithm, abstraction, and time complexity

3. Program data structures such as stack, queue, linked list, tree, heap, sorting and graph

4. Get familiar with the command-line based programming environment (gnu g++) as well as

IDE(Interactive Development Environment) such as MS Visual Studio.

Program Outcomes
PO1 - Scientific Base: an ability to apply the knowledge and information of math, science and

engineering

PO2 - an ability to design and conduct experiments, as well as to analyze and interpret data

My Own Objectives
Give a fish, and you feed him for a day; teach a man to fish and you feed him for a lifetime.

mailto:idebtor@gmail.com

ITP20001/ECE20010 Data Structures

idebtor@gmail.com 2/5 Youngsup Kim

Texts, Materials, and Resources
Required Textbook

not required: a reference - Fundamentals of Data Structures in C++, 2nd Edition, by Horowitz

Video Lectures
There are many lectures on data structures subjects available on YouTube.

 Beginning C Programming by Bluefever

 C++ Programming in One Video by Derek Banas – One-hour C++ introduction video.

 C++ Tutorial – A new tutorial series by Derek Banas on YouTube.

I recommend lessons named Tutorial, Tutorial 2 ~ 8 and 10 (excluding Tutorial 9).

Joining Piazza Discussion Group is required.
To join Piazza, go the www.piazza.com and follow the instruction to register. If you cannot get in,

email me, then I will invite you.

 School: Handong Global University

 Course: ECE20010 Data Structures and C++ for C Coders

Most of our communication between us will go through this site. Your questions should be posted

here. Then your peers, TA or I will answer them. The average response time is expected to be 15

minutes or less if we all work together and help each other.

IDE(Integrated Development Environment)
They are the worst tools if you want to be a good programmer because they hide what's going

on from you, and your job is to know what's going on. An IDE, or "Integrated Development

Environment" will turn you stupid. They are useful if you're trying to get something done and the

platform is designed around a IDE, but for learning to coding at the beginning they are pointless.

Do not use an IDE for one month or more.

 Use Atom & GNU C Compiler (g++) for several weeks.

Once you understand the basics of programming using g++, we will use an IDE. Recently I

reviewed Dev-C and Eclipse, they have too many things to be desired. I decided to stick to MS

Visual Studio Community Edition on PC or Xcode on Mac. Another good choice is Visual Studio

Code that is freely available free of charge.

GitHub – the place we will go every day during this semester.
https://github.com/idebtor/nowic

 Select “Watch” and “Star” buttons at the top of the github page.

 Select and read "README" first.

 Select and read "GettingStarted" and follow the instructions to get started this course.

You may see the following topics and more:

 Joining Piazza Discussion Group is required.

 Installing MSYS2 first and install mingw-w64 to use GNU C/C++ Compiler

 Install “Git” and “GitHub Desktop”

 Install Atom text editor for programmers

Exams, PSets and Grading

Quizzes and Exams
One midterm and one final exam, and pop quizzes without a prior notice. You may expect to

have about a quiz, a project or a kind of test whenever every major topic is completed.

Class Participation, Teamwork, and Q/A’s on Piazza
Proactive class interaction and teamwork are expected. You are encouraged to post your

questions such as homework questions, debugging, errors, anything that other students may

http://www.piazza.com/
https://github.com/idebtor/nowic

ITP20001/ECE20010 Data Structures

idebtor@gmail.com 3/5 Youngsup Kim

also be concerned as well. You may post some recommended resources you have found and

share with your colleagues such as websites, tips, video lectures. Also, you are encouraged to

help your peers by answering questions on Piazza.

Psets or Problem sets - programming assignments
Technically, this course expects many hours of programming and you'll work on your own.

Programming assignments will be given almost every week. Upload your file(s) at least by one

hour before the midnight on its due date. Don't ask me one-minute or one-hour excuse. You

should follow the following guidelines in packaging your programming assignment. Also, follow

TA's instructions if any.

Grading
Grades will be assigned based on the following weights:

Psets(Problem sets), Homework 45

About 10 wake-up pop-quizzes and Labs 5~8

Midterm, Final 23, 23

-0.5 per tardiness, -1.0 per absence -5

Total 100

Letter grades will be assigned using the following scale:

Grade +

A 90.0 95.0

B 80.0 85.0

C 70.0 75.0

D 60.0 65.0

F Below 60.0

 Study hard to give:

We may have labs and pop-quizzes during the classes, especially, in the beginning of the

semester. Two students team up loosely, study together, and take quizzes and do the labs

and help each other.

 If you don’t agree with my grading policy, you should let me know at the first week or day of

registration such that I may suggest you an alternative or you should seriously think about

options of changing the class or dropping the course. At the discretion of the instructor, grades

may be "curved."

Policies and Advice
Classroom Seat

Within a week or two after the term begins, your seat will be fixed for the semester. We may try

another seat shuffling, if majority of students wish, for the second half of the semester.

Late Work
In general, late work will not be accepted. There will be 25% late penalty for the first 24 hours.

No credit after 24 hours of the due date. Due dates usually will be on Saturday or Tuesday night.

Absences
Attendance will be checked from time to time. There will be a penalty for a missing class or late

class attendance. Oversleeping, hangover, birthday, cold, or body ache would not be

considered as an excuse.

Collaboration and Cheating
All incidents of cheating will be reported to the Office of Student Affairs, who will maintain

records of your academic misconduct.

1. Never have a copy of someone else’s program in your possession either electronically or on

paper and never give your program to someone else.

ITP20001/ECE20010 Data Structures

idebtor@gmail.com 4/5 Youngsup Kim

2. Discussing an assignment without sharing any code is generally acceptable. Helping

someone to interpret a compiler error message is an example of permissible collaboration.

However, if you get a significant idea from someone or internet sources, acknowledge them

in your assignment.

3. No cheatings whatsoever in exams and quizzes.

4. In group projects (if any), you share code freely within your team, but not between teams.

Each individual in a team is responsible for the entire project.

5. Cheating on homework or project will lower your letter grade by one at the first time.

Cheating on an exam, project or cheating twice in any way, will earn you an F in the

course. I reserve the right to assign an F in the course to anyone who cheats even once,

though I might not exercise it.

6. Never post a complete program on Piazza for help or question, but a line of code which

causes an error. In that case, you don’t forget posting the entire error message along with a

line of code.

7. You must include the following line at the top of your source file with your name signed.

On my honor, I pledge that I have neither received nor provided improper assistance in the

completion of this programming assignment. Signed: _____________

Advice
In learning programming, a must is to practice (which is to code and to debug). As you read

through the lecture notes, try out the examples. And if you're unsure how some new construct

works, write a small sample program and see! Find tutorial websites that guide you through the

features of subjects. If you approach the course by saying, "I will have fun learning to think in

new ways" then you will do well. If you instead say, "I will go through this course and manage to

get a pass grade.” then you will get frustrated.

Reservation of Rights
I reserve the right to change this syllabus, including without limitation, these policies, without

prior notice.

Weekly Course Schedule – Part I
We are going to build this table as we progress this course.

Wk Topics and Contents Quiz, Homework, Handouts

1
Syllabus (Part I & II)

Course Overview (Part I & II)

2
Development Environment I &

Hello World! & Namespace

Git/GitHub/GitHub Desktop

3
Reference

Pointer

PSet 1 – HelloWho Coding

Lab 2 – Return by reference

4
Function overload

Function pointer

Lab 3 – Function overload

Lab 4 – Function pointer

5 Sorting,
Lab 5 – Sorting

PSet 2 – Sorting

6
Build process

Recursion & Merge sort

Lab 6 – Quicksort

Lab 7 – Static library

7 Performance Analysis PSet 3 – Recursion

8 Asymptotic Analysis

9 Midterm Lab 8 – Profiling

10
Recurrence relations

Discrete math

11 Structures PSet 4 - Clock

ITP20001/ECE20010 Data Structures

idebtor@gmail.com 5/5 Youngsup Kim

12
Stack concept

Stack using a fixed array

13
Stack using a dynamic array

Stack using C++ vector class

14 Queue concept PSet 5 Stack

15
Infix and Postfix Evaluation

Debugging

16 Final Exam PSet 6 Infix and postfix evaluation

Weekly Course Schedule – Part II
We are going to build this table as we progress this course.

Wk Topics and Contents Quiz, Homework, Handouts

1
Course Overview

Pointer and Link

2 Singly Linked List

3 Singly Linked List Implementation

4 Doubly Linked List

5 Doubly Linked List Implementation

6 Tree & Binary Search Tree(BST)

7 Tree & BST Implementation

8 Midterm exam

9 AVL tree & Implementation

10 Heap & Priority Queue(PQ)

11 Heap & PQ Implementation

12 Heap sort & Implementation

13 Hashing & Implementation

14
Graph Concept

Graph API, BFS, DFS

15 Digraph, MST, Graph Implementation

16 Final Exam

Things to do during the first week:

1. Read and follow instructions in https://github.com/idebtor/nowic/01GettingStarted

2. Join Piazza. (www.piazza.com)

Using your ~@handong.edu or ~@hgu.edu account, you may enroll in Piazza by yourself.

I can do it for you if your email address provided.

3. Install MSYS2 first. Then install mingw-w64 to use GNU C/C++ Compiler

4. Install “Git” and “GitHub Desktop” and clone github/idebtor/nowic repository.

5. Install Atom text editor.

6. Using a text editor, write hello.cpp that prints “Hello World!” on the console (or terminal).

Compile it with gcc (gnu compiler collection). You may use the following commands.

g++ hello.cpp –o hello (to compile and link = to build the executable)

hello (to execute)

7. We are going to use Piazza folder for your homework submissions.

8. For further study of c programming basics, watch the following lectures on YouTube.

(1) Beginning C Programming by Bluefever

(2) C++ Programming in One Video and/or C++ Tutorial by Derek Banas.

9. Bring your notebook computer during class.

Written by Youngsup Kim (idebtor@gmail.com)

mailto:~@handong.edu
mailto:~@hgu.edu
mailto:idebtor@gmail.com

