개설력	착기	2018학년도 2학기									
소	속	컴퓨터학부									
교 수	명	아난드 폴									
학	점	3									
수업목	록표	The main objective of this course it to give basic outlook on Discrete Mathematics which includes, propositions, Induction, proof patterns , Graph Theory and functions. Some advanced topics shall also be covered									
주	차	주차별 학습내용	차시(모듈)	차시별 학습내용	학습목표	학습목차	학습자료	PPT 슬라이드 수			
1		Introduction to Class - Online Lecture Logic of Compound Statement	1	Introduction	 Main goal of this online course on Discrete Mathematics is to lay foundation for Computer Science courses such as data 	 1. Why Discrete Mathematics 2. Course Contents 3. Lair Paradox 4. Grading Policy 5. Course Evaluation 		12			
	L		2	Do you speak Math	 Make Sense of problems, and try to solve them Mathematical Reasoning – Abstractly and Quantitatively Mathematical Modeling of Applications of Boolean 	 Use of Variables Some Mathematical Statement The Language of Sets Set-Builder Notation Applications of Boolean 	참고문헌, ppt 교안	13			
			3	Logic of Compound statement	logic 2. Boolean propositions	logic 2. Boolean propositions		15			
			1	Logic of Compound statement	 Boolean variables Logical operators: Conditional 4 Logical operators: Bi- conditional 1 	 Boolean variables Logical operators: Conditional 4 Logical operators: Bi- conditional 1 		20			
2	2	Proposition/ Boolean Logic Proposition/ De Morgan's Law Proposition/ Logic	2	Logic of Compound statement	1. Tautology and Contradiction 2. Logical Equivalence	1. Tautology and Contradiction 2. Logical Equivalence	참고문헌, ppt 교안	22			

	Equivalence	3	Logic of Compound statement	 Modus Ponens example Modus Ponens Modus Tollens Modus Tollens cont 	1. моаиз Ponens example 2. Modus Ponens 3. Modus Tollens 4. Modus Tollens cont		23
		1	Logics of Quantified Statement	function	โ. คิดอุชรไท้อีก่ลานใเดกร 2. Anatomy of a propositional function		18
3	HW on Proposition and Logic of Quantified Statement	2	Logics of Quantified Statement	 A note of quantifiers of quantifiers Binding variables Negating quantifications Translating from English Rules of inference for the 	1. A note of quantifiers and 2. Binding variables 3. Negating quantifications 4. Translating from English 1. Rules of interence for the	참고문헌, ppt 교안	25
		3 Rules of Inf	Rules of Inference	universal quantifier 2. Rules of inference for the	universal quantifier 2. Rules of inference for the		15
	More on Quantifiers and In Class Practice of - Induction/ Methods of Proofs	1	Number Theory	2. The divides operator 3. Theorem on the divides operator 4. Prime numbers 5. Eurodamental theorem of	existential quantifier 1. Why prime numbers? 2. The divides operator 3. Theorem on the divides operator 4. Prime numbers 5. Fundamental theorem of	참고문헌, ppt 교안	19
4		Methods of 2 Number Theory and Metho	Number Theory and Method of Proof	 Fundamental theorem of Pseudorandom numbers The Caesar cipher Rot13 encoding Proof methods 	 Fundamental theorem of Fseudorandom numbers The Caesar cipher Rot13 encoding Proof methods 		17
			Method of Proof	 A Proof methods Proof by contradiction A note on that problem How others explain proof by contradiction What is a set? 	 A proof methods Proof by contradiction A note on that problem How others explain proof by contradiction What is a set? 		27
		1	Set Part	 What is a set? Set properties Specifying a set Often used sets 	1. What is a set? 2. Set properties 3. Specifying a set 4. Often used sets		21
5	Induction practice in the class Strong Induction	2	Set Part	1. Proper subsets: Venn diagram 2. Set cardinality	1. Proper subsets: Venn diagram 2. Set cardinality	참고문헌, ppt 교안	32

I	1 1			1. Set identities	1. Set identities		
				2. How to prove a set identity	2. How to prove a set identity		
		3	Set Part	3. What we are going to	3. What we are going to		31
				prove	prove		
				4 Proof by using basic set 1. Definition of a function	<u>A Proof by using basic set</u> 1. Definition of a function		
		1	Function Part	2. Function terminology	2. Function terminology		15
		1		3. More functions	3. More functions		15
				4. Even more functions	4. Even more functions		
	Number Theory with Example	2	Inverse Function	1. More on inverse functions	1. More on inverse functions	참고문헌,	23
6	and Practice	Z		2. set X mapping into a Set Y			25
	and Practice			1. Graphs of functions	1. Graphs of functions	ppt 교안	
				2. Compositions of functions	2. Compositions of functions		
		3	Function Part	3. Useful functions	3. Useful functions		20
				4. Sample floor/ceiling	4. Sample floor/ceiling		
				questions	questions		
		1	Induction I_Sequence	1. Definitions	1. Definitions		
				2. Sequences	2. Sequences		
				3. Geometric vs. arithmetic	3. Geometric vs. arithmetic		30
				sequences	sequences		
				4. Fibonacci sequence 1. How do you climb infinite	4 Fibonacci sequence		
	Sequence	2	Induction II_Weak and Strong		1. How do you climb infinite	참고문헌, ppt 교안	
7				stairs?	stairs?		28
				2. Let's use that as a proof	2. Let's use that as a proof		
				method 1. Chess and induction	method 1. Chess and induction		
			Induction III_Structual and	2. Inducting stones	2. Inducting stones		
		3	Recursion	3. Recursion	3. Recursion		40
		Г	Recuision				
				4. Fibonacci sequence	4. Fibonacci sequence		
		1	RELATIONS	2. Representing relations	2. Representing relations		21
		Ŧ		3. Relations vs. functions	3. Relations vs. functions		21
				1. Cohtionning relations	1. Colntonning relations		
	Sets			2. Combining relations via	2. Combining relations via	참고문헌,	
8	Function Introduction	2	RELATIONS	Boolean operators	Boolean operators	a고문헌, ppt 교안	23
	Function Introduction		3 Combining relations via	3 Combining relations via	ppt 교언		

		3	RELATIONS	 Representing relations using directed graphs Reflexivity Irreflexivity 	 Representing relations using directed graphs Reflexivity Irreflexivity 		26
		1 R	Relations App	 6 degrees of separation 2. Connectivity relation 3. How long are the paths in a transitive closure? 1. Private key cryptography 	 6 degrees of separation 2. Connectivity relation 3. How long are the paths in a transitive closure? 1. Private key cryptography 		21
9	and Inverse Function example	2	RSA Relations App	 Public key cryptography Is that number prime? More on the Fermat 	 Public key cryptography Is that number prime? More on the Fermat 	참고문헌, ppt 교안	32
		3	3 PGP Relations App	1: PGP ^{it} thtestnupg 2. How to "crack" PGP 3. Man-in-the-middle attack:	2. How to "crack" PGP 3. Man-in-the-middle attack:		21
		1	Counting	 The product rule The sum rule More complex counting problems The inclusion-exclusion 	 The product rule The sum rule More complex counting problems The inclusion-exclusion 		19
10	Relations and Recurrence	2	Permutation and Combination	1. The pigeonhole principle	 The pigeonhole principle Generalized pigeonhole principle Sample questions 	참고문헌, ppt 교안	33
		3	Pascal's Triangle	 Polynomial expansion Polynomial expansion: The binomial theorem Pascal's triangle Seven Bridges of Ko 	Polynomial expansion Polynomial expansion: The binomial theorem <u>Pascal's triangle Seven Bridges of Ko</u>		27
		1	Graph Theory part	1. Seven Bridges of Ko nigsberg 2. A Graph 3. Fulfic's Salution	1. Seven Bridges of Ko nigsberg 2. A Graph 3. Eulre's Salution		17
11	Graph Theory Discussion	2	Graph Theory part	 Same Graphs: Graph Isomorphism Are These Isomorphic? Checking Croph 	2. Graph Isomorphism 3. Are These Isomorphic?	참고문헌, ppt 교안	26

1	1			1. Partitioned into Simple	1. Partitioned into Simple	· •	
				Cycles	Cycles		
		3	3 Graph Theory part 2. Proof 2. Proof				30
				3. Tree	3. Tree		
				1. minimum spanning tree	1. minimum spanning tree		
				2. Prim's Algorithm	2. Prim's Algorithm		
		1		3. Kruskal's Algorithm	3. Kruskal's Algorithm		22
		1	Application of Graphs	4. Adjacency matrix for graph	4. Adjacency matrix for graph		22
				5. Single Source Shortest Path	5. Single Source Shortest Path		
				Algorithm	Algorithm	n r 참고문헌, ppt 교안	
				1. What is an algorithm?	1. What is an algorithm?		
				2. Some algorithms are harder	2. Some algorithms are harder		
				than others	than others		
12	More on Graph and Trees its	2	Algorithm	3. Algorithm 1: Maximum	3. Algorithm 1: Maximum	참고문헌,	26
12	related algorithm			element	element		
				4. Maximum element running	4. Maximum element running		
				time	time		
				1. Insertion sort running time	1. Insertion sort running time		
				2. Comparison of running	2. Comparison of running		
				times	times		
		3	Algorithm	3. How does one measure	3. How does one measure		32
			5	algorithms	algorithms		
				4. Bubble sort running time	4. Bubble sort running time		
				0	3		
				5 An aside: inequalities 1. Logics	5 An aside: inequalities 1. Logics		
				2. Application: A More	2. Application: A More		
		1	Review of DM	Complex Deduction	Complex Deduction		19
				3. Proof	3. Proof		
				4. Tarski's World	4. Tarski's World		
				2. Mathematical Induction	2. Mathematical Induction		
		2	2 Review of DM			차ㄱㅁ칭	15
13	Probability and Counting			Works Using Dominoes	Works Using Dominoes	참고문헌,	
				KUSSEII's Paradov	Kussell's Paradov	년대 taa	

		1. Introduction	1. Introduction	PP · L	
		2. Machine	2. Machine		
		3. Finite-State Machine	3. Finite-State Machine		
3	Finite State Machine	4. Diagraph Notation	4. Diagraph Notation		17
		5. Newspaper Vending Box	5. Newspaper Vending Box		
		Digraph	Digraph		
		6. Regular Expressions	6. Regular Expressions		