강의 계획서

<u>2012학년도 제1학기</u>

년도/ 학기	2012학년도 1학기	
교과목명	회로이론1	
교수명	송봉식	
수업유형	강의저장	
언어	한국어	
강의개요	기본적인 수동소자, 능동소자에 관련되는 제 수식 및 기본법칙, 정현파 교 류, 복소수 에 기초한 교류 해석, 교류회로의 전력 및 에너지 등의 기초적 이고 기본적인 원리와 개념을 습득한 뒤, 일반 선형회로망 해석 능력을 함양시킨다. 아울러, 다상교류회로 방식중 대표적 3상 교류회로의 기초적인 개념을 이해함으로써, 실제적인 전기회로의 해석능력 및 응용력을 배양시 킨다.	
교재 및 참고도서	동영상 강의자료로 대체	
강의 주제 및 내용		
1	Ch. 1-1. Circuit Variables1.1 Electrical Engineering: An Overview1.2 The International System of Units1.3 Circuit Analysis: An Overview1.4 Voltage and Current1.5 The Ideal Basic Circuit Element1.6 Power and Energy	
2	Ch. 1-2. Circuit Variables1.1 Electrical Engineering: An Overview1.2 The International System of Units1.3 Circuit Analysis: An Overview1.4 Voltage and Current1.5 The Ideal Basic Circuit Element1.6 Power and Energy	
3	Ch. 2-1. Circuit Elements2.1 Voltage and Current Sources2.2 Electrical Resistance2.3 Construction of a Circuit Model2.4 Kirchhoff	
4	Ch. 2-2. Circuit Elements2.1 Voltage and Current Sources2.2 Electrical Resistance2.3 Construction of a Circuit Model2.4 Kirchhoff	
5	Ch. 3-1. Simple Resistive Circuits3.1 Resistor in Series3.2 Resistor in Parallel3.3 The Voltage-Divider and Current-Divider Circuits3.4 Voltage Division and Current Division	
6	Ch. 3-2. Simple Resistive Circuits3.1 Resistor in Series3.2 Resistor in Parallel3.3 The Voltage-Divider and Current-Divider Circuits3.4 Voltage Division and Current Division	
7	Ch. 3-3. Simple Resistive Circuits3.5 Measuring Voltage and Current3.6 Measuring Resistance-The Wheatstone Bridge3.7 Delta-to-Wye Equivalent Circuits	
8	Ch. 3-4. Simple Resistive Circuits3.5 Measuring Voltage and Current3.6 Measuring Resistance-The Wheatstone Bridge3.7 Delta-to-Wye Equivalent Circuits	

9	Ch. 4-1. Techniques of Circuit Analysis4.5 Introduction to the Mesh-Current Method4.6 The Mesh-Current Method and Dependent Sources4.7 The Mesh-Current Method: Some Special Cases4.8 The Node-Voltage Method vs. Mesh-Current Method
10	Ch. 4-2. Techniques of Circuit Analysis4.5 Introduction to the Mesh-Current Method4.6 The Mesh-Current Method and Dependent Sources4.7 The Mesh-Current Method: Some Special Cases4.8 The Node-Voltage Method vs. Mesh-Current Method
11	Ch. 4-3. Techniques of Circuit Analysis4.9 Source Transformations4.10 Thevenin and Norton Equivalents4.11 More on Deriving a Thevenin Equivalent4.12 Maximum Power Transfer4.13 Superposition
12	Ch. 4-4. Techniques of Circuit Analysis4.9 Source Transformations4.10 Thevenin and Norton Equivalents4.11 More on Deriving a Thevenin Equivalent4.12 Maximum Power Transfer4.13 Superposition
13	Ch. 5-1. The Operational Amplifier5.1 Operational Amplifier Terminals5.2 Terminal Voltage and Currents5.3 The Inverting-Amplifier Circuit5.4 The Summing-Amplifier Circuit
14	Ch. 5-2. The Operational Amplifier5.1 Operational Amplifier Terminals5.2 Terminal Voltage and Currents5.3 The Inverting-Amplifier Circuit5.4 The Summing-Amplifier Circuit
15	Ch. 5-3. The Operational Amplifier5.5 The Noninverting-Amplifier Circuit5.6 The Difference-Amplifier Circuit5.7 A More Realistic Model for the Operational Amplifier
16	Ch. 6-1. Inductance, Capacitance, and Mutual Inductance6.1 The Inductor6.2 The Capacitor6.3 Series-Parallel Combinations of Inductance6.4 Mutual Inductance6.5 A Closer Look at Mutual Inductance
17	Ch. 6-2. Inductance, Capacitance, and Mutual Inductance6.1 The Inductor6.2 The Capacitor6.3 Series-Parallel Combinations of Inductance6.4 Mutual Inductance6.5 A Closer Look at Mutual Inductance
18	Ch. 7-1. Response of First-Order RL and RC circuits7.1 The Natural Response of an RL Circuit7.2 The Natural Response of an RC Circuit
19	Ch. 7-2. Response of First-Order RL and RC circuits7.3 The Step Response of RL and RC Circuits7.4 A General Solution for Step and Natural Responses
20	Ch. 8-1. Natural and Step Responses of RLC Circuits8.1 Introduction to the Natural Response of a Parallel RLC Circuit8.2 The Forms of the Natural Response of a Parallel RLC Circuit