my KNU(1) 페이지 1/4

▶ 강의계획서

검색조건 :	
교양/교직/군사학	lacksquare
핵심교양(영역1) 글쓰기(1-①)	\checkmark
[수업시간][건물 및 교과구분 코드][검색]	조회

[한글강의계획서보기]

Course Title	Digital Signal Processing
Course Code	ELEC701001
Credits	3.0
Department	전자공학부
Semester	20161
Course Categories	전공
Instructor	HA YEONG-HO
Hours	화1A1B2A 화2B3A3B
Location	IT대학1호관(공대10호관)613 IT대학1호관(공대10호관)613
Phone/E-mail	** 통합정보시스템 로그인- 수업/성적- 수업- "강의담당교수조회"에서 확인 가능함.
Office Hours	
language	영어

🗱 [Syllabus]

Course Goals and Objectives

The objective of this course is to make students understand and cultivate the principles and applications of di gital signal processing in graduate level, and expand the concepts to the advanced topics.

Textbook and other references

[Text books]

- 1. Y. H. Ha, Digital Signal Processing, Green, 2009
- 2. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Second Edition, Prentice Hall, 199

[References]

my KNU(1) 페이지 2/4

1. J. G. Proakis and D. G. Manolakis, Digital Signal Processing Principles, Algorithms, Applications, Prentice -Hall, 1996

2. E. C. Ifeachor and B. W. Jervis, Digital Signal Processing, Second Edition, Prentice Hall, 2002

Course Description, Methods, and Materials

Give lectures with using Power Point slides of lecture materials

Assignments, Grading Criteria, Prerequisite Subject

Evaluation: 1st Quiz (30%), 2nd Quiz (30%), 3rd Quiz (30%), and Homework and Programming Assignments (10%),

Prerequisite: basic knowledge to Signals and Systems

Notice To Students

Skill in C++ programming language

Notice To Students with Disabilities

Hearing Impaired: first row priority seating, class transcripts may also be provided.

🎆 [Course Lesson Plan]

no	Course Goals and Objectives	Assignment	Text & Materials	Etc.
1	I. Fundamental Theory and Principles of Digital Signal Processing1. Analog signals and systemsFourier series, Fourier transform		DSP (Ha) DSP (Ifeach or)	
2	- Laplace transform, Impulse function, Convolution, Tr ansfer function, Analog Butterworth filter	H/W #1 : Fourier and Laplace t ransforms of various functions	DSP (Ha) DSP (Ifeach or)	
3	2. SamplingSampling theorem, Signal reconstruction, A/D and D/A converters, Quantization		DSP (Ha) DSP (Ifeach or) DTSP (Opp enheim)	
4	3. Discrete-time signals and transformDFT and FFT, Discrete convolution, Truncation and w indow functions	Programming #1 : FFT and sp ectral window	DSP (Ha) DSP (Ifeach or)	
5	1st Quiz			

my KNU(1) 페이지 3/4

			DSP (Ha)
6	4. Z transform- Z transform and Inverse Z transform		DSP (Ifeach or) DTSP (Opp enheim)
7	5. Discrete-time systemsDifference equation, LTI discrete-time system, Stability, Frequency response, Structures and implementations of discrete-time systems		DSP (Ha) DSP (Ifeach or) DTSP (Opp enheim) DSP (Proaki s)
8	6. FIR digital filter designWindowing method, Optimal methods	H/W #3: Frequency and phase responses of discrete-time sys tems	DSP (Ha) DSP (Ifeach or) DTSP (Opp enheim) DSP (Proaki s)
9	7. IIR digital filter design - Impulse invariant method, Bilinear z transformation m ethod	Programming #2 : Design of FI R digital filter	DSP (Ha) DSP (Ifeach or) DTSP (Opp enheim) DSP (Proaki s)
1 0	2nd Quiz		
1	II. Advanced Topics of Digital Signal Processing 1. Changing sampling rate using discrete-time processing	Programming #3 : Design of II R digital filter design	DTSP (Opp enheim) DSP (Proaki s)
1 2	2. Inverse systems, All-pass systems, Minimum-phase systems		DTSP (Opp enheim) DSP (Proaki s)
1 3	3. Finite-precision numerical effects, Effects of coefficient quantization		DTSP (Opp enheim) DSP (Proaki s)
1 4	4. Effects of round-off noise in digital filters, Zero-input limit cycle in IIR digital filters		DTSP (Opp enheim) DSP (Proaki s)
1 5	3rd Quiz		

my KNU(1) 페이지 4/4

Cheating, plagiarism, and other dishonest practices will be punished as harshly as Kyungpook National University policies allow. The University specifies that cheating is grounds for dismissal. Penalties less severe may be imposed instead. A list of possible disciplinary actions is given below. Actions by the university:

- Failure in course
- Suspension from university for a designated period
- Expulsion from university