과목명	Quantum Mechanics for 개발기간/ IT/NT/BT 운영시기			2015.04~2015.08 / 2015.09~2015.12	
개발 교·강사명	김대만(Dae Mann Kim)		운영 교·강사명	김대만(Dae Mann Kim)	
수업목표	IT/NT/BT 학습을 위한 양자물리와 양자화학의 기초지식을 응용 위주로 제공함.				
평가방법	home work 이수기준 중간고사와 학기말 고사에서 합격점 획득			서 합격점수	
교재 (저자,출판사,출 판년도포함)	Introductory Quantum Mechanics for Applied Nanotechnology Dae Mann Kim, John Wiley, April 2015				
주차	차시 (모듈)	차시별 학습내용	수업방법	학습자료 (과제 개요)	주차별 평가방법
1	1	Generalities of Quantum Mechanics And Review of Classical Theories	판서녹화	Quantum Mechanics & IT/NT/BT. harmonic oscillator, Boltzmann distribution function, equipartition theorem, mobility and conductivity, non-equilibrium distribution function	
	2	Review of Classical Theories	판서녹화	Maxwell's equations, E & H fields, plane waves & wave packets, band width & pulse duration	Exercises
	3	Milestones Leading to Quantum Mechanics	판서녹화	blackbody radiation & quantum of energy, photoelectric effect & photon, Compton scattering & particle nature of light	
	4	Milestones Leading to Quantum Mechanics	판서녹화	duality of matter, de Broglie wavelength, Bohr's theory of H-atom, atomic radius, quantized energy level, quantum transitions	Exercises
2	1	Schrödinger Wave Equation	판서녹화	time-dependent SE, operator algebra & basic postulates, wavefunction, probability density, expectation value,	
	2	Schrödinger Wave Equation	판서녹화	time-independent SE, eigenequation, eigenfunction, eigenvalue, commutation relation, conjugate variables & uncertaity relation, properties of eigenfunction	Exercises
	3	Bound States in Quantum Well & Wire	판서녹화	electrons in solids, bounbd states in infinite square well potential, quantized energy level, particle in 3D box, 1D, 2D & 3D densities of states	
	4	Bound States in Quantum Well & Wire	판서녹화	quantum well, quantum wire, subbands, particle in quantum well, particle in quantum wire	Exercises

3	1	Scattering & Tunneling of 1D Particle	판서녹화	scattering at step potential, probability current density, reflection & transmission coefficients, scattering from quantum well, resonant transmission, tunneling & tunneling probability	
	2	Scattering & Tunneling of 1D Particle	판서녹화	tunneling through a single & multiple potential barrier, resonant tunneling, direct & F-N tunneling, scanning tunneling microscopy, field emission display, single electron transistor	Exercises
	3	Energy Bands in Solids	판서녹화	Kronig-Penny potential, Bloch wavefunction, secular equation & dispersion elation, allowed band & forbidden gap	
	4	Energy Bands in Solids	판서녹화	E-k curves in 1st Brillouin zone, electron velocity in energy band, effective mass of electron, energy band & resonant tunneling	Exercises
4	1	Quantum Treatment of Harmonic Oscillator	판서녹화	eigenfunction & eigenenergy, energy spectrum, zero point energy, properties of eigenfunction, correspondence principle	
	2	Quantum Treatment of Harmonic Oscillator	판서녹화	uncertainty relation in eigenstate, HO in linearly superposed states, operator treatment of HO, creation & annihilation operators, number operator, phonon	Exercises
	3	Schrödinger Treatment of Hydrogen Atom	판서녹화	angular momentum operators & commutation relations, spherical harmonics & spatial quantization, angular momentum & magnetic quantum numbers, atomic orbitals	
	4	Schrödinger Treatment of Hydrogen Atom	판서녹화	electron-proton interaction, center of mass & relative motions, reduced mass, principal quantum number and energy eigenvalue, Bohr radius, atomic spectroscopy, degeneracy, reduced [probability density	Exercises
5	1	Perturbation Theory	판서녹화	time-independent perturbation theory; non-degenerate & degenerate, Stark effect in H-atom, atomic polarizability	
	2	Perturbation Theory	판서녹화	Time-dependent perturbation theory, harmonic perturbation, Fermi's golden rule	Exercises
	3	System of Identical Particles	판서녹화	electron spin and Pauli spin matrices, spin operators & spin eigenfunctions, two-electron system & Helium atom, ionization energies; 1st & 2nd, singlet & triplet states, overlap & exchange integrals	
	4	System of Identical Particles	판서녹화	multi-electron atoms and periodic table, electron configuration, ionization energy & screening of charge, affinity factor, spin-orbit coupling & fine structure of speectral lines, Zeeman effect, electron paramgnetic resonance,	Midterm Exam

6	1	Molecules and Chemical Bonds	판서녹화	ionized hydrogen molecule, overlap, Coulomb & exchange integrals, bonding & anti-bonding, binding energy	
	2	Molecules and Chemical Bonds	판서녹화	hydrogen molecule, Heitler-London theory, covalent bond, ionic bond, Van der Waals attraction, polyatomic molecules, hybridization	Exercises
	3	Molecular Spectra	판서녹화	Born-Oppenheimer approximation, rotational & vibrational spectra, selection rule, P & R branches,	
	4	Molecular Spectra	판서녹화	nuclear spin & magnetic moment, hyperfine interaction & structure, Zeeman splitting, nuclear magnetic resonance, molecular imaging	Exercises
7	1	Atom-Field Interaction	판서녹화	classical treatment; stimulated & spontaneous emission, Einstein A coefficient, atom-dipole, Rabi flopping formula	
	2	Atom-Field Interaction	판서녹화	quantum treatment; quantization of EM field, creation, annihilation & number operators, photons	Exercises
	3	Interaction of EM Waves with Optical Media	판서녹화	attenuation & amplification, dispersion, attenuation & gain coefficients, permittivity, atomic susceptibility	
	4	Interaction of EM Waves with Optical Media	판서녹화	density matrix, relaxation times; longitudinal & transverse, laser oscillator, population inversion, rate equation, threshold pumping, laser intensity & frequency	Exercises
8	1	Semiconductor Statistics	판서녹화	quantum statistics, conductor, insulator & semiconductor, Fermion, Boson, Fermi-Dirac distribution function, Bose-Einstein distribution function	
	2	Semiconductor Statistics	판서녹화	electron density in conduction band, hole density in valence band, equilibrium, law of mass action, Fermi level. intrinsic & extrinsic semiconductors, donors, acceptors, Fermi potential	Exercises
	3	Carrier Transport	판서녹화	mobility, drift velocity, diffusion coefficient, Einstein relation, current density, equilibrium & Fermi level	
	4	Carrier Transport	판서녹화	non-equilibrium and quasi-Fermi level, generation & recombination; band to band & trap-assisted, recombination & generation rates, minority carrier lifetime	Exercises

9	1	P-N Junction Diode: I-V Behavior	판서녹화	p-n junction in equilibrium & non-equilibrium, junction band bending, depletion depth, built-in potential, charge injection & extraction,	
	2	P-N Junction Diode: I-V Behavior	판서녹화	forward & reverse biases, forward & reverse currents, generation & recombination currents, junction breakdown; avalanche & Zener	Exercises
	3	P-N Junction Diode: Applications	판서녹화	optical absorption in semiconductors, absorption coefficient, photodiode, photocurrent,	
	4	P-N Junction Diode: Applications	판서녹화	junction solar cell, photovoltaic effect, open circuit voltage, short circuit current, LED, laser diode, superlattice structure & sub-bands	Exercises
10	1	Field Effect Transistors	판서녹화	MOSFET, NMOS, PMOS, channel inversion, threshold voltage, surface charge, ON, OFF & subthreshold currents	
	2	Field Effect Transistors	판서녹화	silicon nanowire FET, subband spectra, long & short channel FETs, ballistic FET, tunneling FET, subthreshold swing, thermionic & field emission	Exercises
	3	The Application and Novel Kinds of FETs	판서녹화	Nonvolatile flash EEPROM programming, erasing & reading, solar cell; planar, multi-junction & nanowire	
	4	The Application and Novel Kinds of FETs	판서녹화	biosensor, ISFET, target molecule & probe molecule, spin FET, transport of spin up & down states, spin qubits and quantum computing, entanglement, parallel NOT operation	Final Exam