Course Syllabus

Instructor:	Myung- Jig Kim,
Course Number:	ECO3077
Course Name:	Financial Consulting
Credit:	3
College:	College of Economics & Finance
Semester:	Fall 2014
Language:	Korean
Office Hours:	ТВА

Course Description:

This course is an introduction to data analysis and econometric modeling using applications in finance such as asset pricing, forecasting term structure of interest rates, strategic and tactical asset allocation, value at risk, and index tracking. Equivalently, this course is an introduction to computational finance and financial econometrics. As such, the course utilizes concepts from microeconomics, finance, mathematical optimization, data analysis, probability models, statistical analysis and econometrics.

The emphasis of the course will be on making the transition from an economic model of asset return behavior to an econometric model using real data. This involves: (1) specification of an economic model; (2) estimation of an econometric model; (3) testing of the assumptions of the econometric model; (4) testing the implications of the economic model; (5) forecasting from the econometric model. The modeling process requires the use of economic theory, probability models, optimization techniques and statistical analysis.

Topics in financial economics include asset return calculations, portfolio theory, index models, the capital asset pricing model and investment performance analysis. Mathematical topics covered include optimization methods involving equality and inequality constraints and basic matrix algebra. Statistical topics to be covered include probability and statistics (expectation, joint distributions, covariance, normal distribution, sampling distributions, estimation and hypothesis testing etc.) with the use of calculus, descriptive statistics and data analysis, linear regression, basic time series methods and the simulation of random data.

The course will mostly utilize Microsoft Excel for spreadsheet modeling, data analysis and statistical modeling. Eviews (econometrics software) and GAUSS (matrix computer language) will be occasionally introduced to supplement and to extend the data analysis and forecasting.

Goals:

- 1. To promote capacity as a financial consultant
- 2. To learn how to mix and apply various methods to solve real problems
- 3. To enhance research and communication skills

Credit:

Mid-term:	30%
Final:	40%
Assignment and Class Participation:	20%
Attendance:	10%

Class Rules:

- No makeup exams

- No late turn in

- Attendance is checked randomly

Textbooks:

1. (Main Textbook) Financial Modeling and Consulting

Myung-Jig Kim (Hanyang University) ©2008 (will be distributed in class in PDF files)

2. **Modern Portfolio Theory and Investment Analysis**, Sixth Edition (or later), by E.J. Elton, M.J. Gruber, S.J. Brown, and W.N. Goetzmann, Wiley, New York, 2003. (Recommended, but not required)

3. **Financial Modeling**, Second Edition, by Simon Benninga, Second Edition (or later), MIT Press, 2000. (Recommended, but not required)

Tentative Schedule:

	Торіс	Sub-title	Description
1	Problems of Financial	1 Quantitative	This subject focuses on being
	Econometrics:	methods to various	familiarized with quantitative
	Introduction to Analyzing	financial problems	methods and computer programs
	Financial Time Series		to various financial problems.
	Using Excel, EViews,	2 Computer programs	
	and GAUSS	to various financial	
		problems	
2	Probability, Statistics,	1 Probability Theory	Probability theory, statistics, and
	and Regression Analysis		econometrics are key components

		2 Statistics	of applied econometric modeling.
		3 Regression Analysis	applications will be reviewed under this subject.
3	Forecasting Tools: Univariate Time Series Models and Vector Time Series Models	1 Univariate Time Series Models 2 Vector Time Series Models	Both univariate and vector time series models are frequently used in practice to generate forecasts for many variables such as CPI, GDP, stock prices, and exchange rates. ARIMA(p,d,q) model and VAR model will be reviewed under this subject.
4	Forecasting Tools (continued) Vector Time Series Models, Forecasting Volatility, and Numerical Optimizations	 Vector Error Correction Models Forecasting Volatility Numerical Optimizations 	Long-term vs. short horizon forecasting models are often differently constructed. For the long-term forecasting purpose, vector error correction model will be introduced. For forecasting volatility, parametric models such as GARCH and BEKK models are studied. In addition, the idea of numerical optimization and its implementation will be covered under this subject.
5	Mean Variance Portfolio Theory	1 Mean-variance optimization 2 Efficient frontier	Modern portfolio theory heavily draws upon quantitative methods. In this subject, basic concepts of such theory will be reviewed.
6~ 7	Modern Portfolio Theory	1 Tracking error optimization	Modern portfolio theory extends the traditional mean variance portfolio theory in many directions.

		2 Safety first based	In this subject, tracking errors
		optimization	optimization, safety first rule, and
			the related concepts will be
		3 Simulation based	covered.
		optimization	
8	Models of Equilibrium in	1 Capital Asset Pricing	Two key models that allow one to
	the Capital Markets:	Model (CAPM)	compute expected returns will be
	Capital Asset Pricing		discussed. A particular attention
	Model and Arbitrage	2 Arbitrage Pricing	will be paid to the implementation
	Pricing Model	Theory (APT)	of such models and the Bayesian
			modification.
9	Security Analysis:	1. Present value	After the tactical asset allocation,
	Valuation of stocks	model	investment has to be made. In
			doing so, the valuation of stocks
		2. Stock selection	and bonds become important. This
			subject will discuss the issues that
			are related to such valuations.
10-	Interest Rate Theory	1 Term Structure of	The econometric methods for
11	and the Pricing of Bonds	Interest Rates	modeling the term structure of
			interest rates will be discussed.
		2 Pricing of Bonds	Students will learn how to price
			various types of bonds and
			measures for risk management.
12	Risk Models	1 Value at Risk	Credit risk models will be
			introduced under this subject.
		2 Credit Value at Risk	
13	Capital Adequacy: Basel	1 Theoretical	New Basel Accord, or better
	Ш	background of Basel II	known as Basel II (and the current
		framework	amendment known as Basel III), is
			the international framework for
		2 The experience of	regulating the capital adequacy of
		Basel II	banks. Theoretical background
		implementation	and the experience of Basel II
			implementation will be discussed.
14	Predicting Default and	1 Default prediction	Default prediction and credit rating

Designing Credit Rating	models	system are important means for
		banking business and risk
	2 Credit rating system	management. The implementation
		of such models (system) will be
		discussed under this subject.

Suggested Readings:

TBA